Computing
Dimensionally Parametrized
Determinant Formulas

Diplomarbeit
vorgelegt von
Mark Ziegelmann

nach einem Thema von Prof. Dr. Raimund Seidel
im Fachbereich 14, Informatik, der Universitiat des Saarlandes

Hiermit erkldre ich an Eides Statt, daf ich diese Diplomarbeit selbstdndig verfafst und nur die angegebe-
nen Quellen und Hilfsmittel benutzt habe. Ferner habe ich die Arbeit noch keinem anderen Priifungsamt
vorgelegt.

Saarbriicken, im Dezember 1997

Danksagung

An dieser Stelle mochte ich mich bei Herrn Prof. Dr. Raimund Seidel fiir die Vergabe des interessanten
Themas und fiir wertvolle Anregungen bedanken.

Des weiteren danke ich Markus Denny, Nicola Geismann und Frank Lehmann fiir viele fruchtbare Diskus-
sionen. Inbesondere danke ich Frank Lehmann ebenfalls fiir das kritische Korrekturlesen der Arbeit.

Vielen Dank auch an Jochen Comes, der mich von den Féhigkeiten von LyX iiberzeugt hat und mir als
Experte stets zur Seite stand. Bei allen Angehdrigen des Lehrstuhls bedanke ich mich fiir die freundschaftliche
Atmosphire.

Mein besonderer Dank gilt meiner Familie und meiner Freundin, ohne deren Unterstiitzung und Versténdnis
ich mich nicht in dieser Weise meinem Studium hétte widmen kénnen.

Contents

Introduction

1 Introduction to determinants

1.1 A brief history of determinants e
1.2 Definition and basic properties of determinants
1.3 Applications L
1.3.1 Matrix inversion and systems of linear equations
1.3.2 Eigenvalue problems
1.3.3 Volume computation
1.3.4 Geometric primitives oL e e e
1.4 General algorithms and practical results o oo
1.4.1 Standard algorithms
1.4.2 Practical results and the problem of exact computation
1.5 Motivation e

Frame forms

2.1 Determinants of 7-matrices L e
2.2 Determinants of arrow matrices
2.3 Determinants of N—matrices e
2.4 Determinants of R—matrices L
2.5 Determinants of DB—matrices L
2.6 Transformation into border form L oL
2.7 Implementation e e
2.7.1 General Considerations
2.7.2 The package functions
2.7.2.1 General Properties

2.7.2.2 Special Properties

2.7.3 Problems e

2.8 SUmMmMAry e

coO 00 00 N NN k= w W

e e T e T
N = O O

ii

3 Alternants

3.1

3.2
3.3

3.4

Alternants

3.1.1 Definition and basic properties

CONTENTS

3.1.2 Symmetric Functions L e
3.1.3 Expressing simple Alternants as complete symmetric functions
3.1.4 Reducing alternants to simple alternants oL
3.1.5 Computing elementary symmetric function representation of alternants

3.1.6 Taking care of fractions and transcendental or exponential generating functions

Double Alternants
Implementation
3.3.1 General Considerations . . .
3.3.2 The package functions
3.3.3 Problems and Restrictions . .

Summary

4 Determinants of Hessenberg and tridiagonal matrices

4.1 Continuants or Determinants of tridiagonal matrices
4.2 Determinants of Hessenberg matrices L Lo
4.3 TImplementation L L e
4.3.1 General Considerations
4.3.2 The Package functions L
4.4 SUMINATY . . . o o o e

5 Determinants of symmetric matrices

5.1
5.2
5.3
5.4

5.5

5.6

Centrosymmetric Determinants . . .
Axisymmetric Determinants
Zero—axial skew determinants
Persymmetric Determinants
5.4.1 Toeplitz Matrices
54.2 Circulants
Implementation
5.5.1 General considerations
5.5.2 The package functions

Summary

Summary and Discussion

43
43
43
47
49
93
93
99
62
66
66
66
69
69

71
71
79
84
84
85
86

87
87
91
95
101
101
110
113
113
114
115

117

CONTENTS

A The Computer Algebra System Maple

A.1 What is Maple ?

A.1.1 Maple’s internal organization Lo

A.1.1.1 Internal Functions
A.1.1.2 The Maple Library e
A.1.1.3 Internal Representation of Data Types

A.1.2 The Maple programming language
A.1.3 Building your own MAPLE package

A2 Why MAPLE?

B Tutorial for the implemented Maple packages
B.1 The FRAMEFORMS package o o e

B.2 The ALTERNANT package

B.3 The HESSENBERGandCONTINUANT package

B.4 The SYMMETRIC package

Bibliography

iii

119
119
120
120
120
121
122
123
125

127
127
149
169
177

194

iv

CONTENTS

Introduction

Determinants have a long history in mathematics and arise in numerous applications. Consequently, they
have been researched extensively which has yielded efficient algorithms for determinant computation of dif-
ferent matrix classes. Here we are not interested in the wvalue of a determinant of fixed integer order but
rather in the determinant formula of a specially structured matrix of symbolic dimension n. It is assumed
that a certain simple structure of a matrix yields a corresponding special structure for its determinant for-
mula. This problem has been investigated very early, Muir’s treatise on the theory of determinants [Met60]
contains a large number of early papers related to this subject motivated by applications in algebra and
analysis or simply by the interesting structures of the matrix coefficients. Nowadays, many of these results
tend to be forgotten or are buried in induction exercises in linear algebra books. Applications of dimension-
ally parametrized determinant formulas occur for example in the study of arbitrary dimensional geometric
predicates in determinant form: If we want to prove a general statement for a special configuration then we
need the determinant formula of the predicate.

The goal of this work is the investigation of determinant formulas for a number of important classes of
specially structured matrices and the design of a software package for the computer algebra system Maple
that tries to derive determinant formulas for specified matrices of these classes.

This work is organized as follows:

The first chapter is an introduction to determinants. We give a brief historical overview about the develop-
ment of determinants, followed by the definition and the basic theoretical background of determinants. After
an outline of possible applications we discuss general algorithms for determinant computation and motivate
the desire to derive determinant formulas for specially structured matrices.

In Chapter 2 we derive general determinant formulas for matrix classes that only have bordering rows and
columns as well as the main diagonal nonzero. Determinants of this kind arise for example in the formulation
of special geometric predicates and will be important for the treatment of other matrix classes. We try to
generalize the concept allowing another neighbouring nonzero diagonal or allowing the nonzero rows and
columns to have arbitrary position. The chapter closes with a description of the implementation of a Maple
package dealing with such matrices.

Chapter 3 is devoted to alternants. We present early results showing that an alternant is the product of a
symmetric function with the difference product of its variables. With the help of these results we are able
to derive determinant formulas for a restricted class of alternants. In the second part of the chapter we try
to generalize the results for double alternants. The last part of the chapter focuses on the implementation
of a Maple package that can handle a special class of alternants.

Chapter 4 discusses determinants of tridiagonal matrices and Hessenberg matrices that often arise in eigen-
value problems. We derive recurrence formulas for both classes and explicit formulas for a few special cases.
The connection of continuants to continued fractions and Fibonacci numbers is pointed out. Implementation
issues of a corresponding Maple package are covered in the last part of the chapter.

Chapter 5 deals with symmetric determinants. We distinguish different kinds of symmetries and try to
obtain determinant formulas for special classes of these matrices making use of the results of Chapter 2
and Chapter 4. The implementation of a package dealing with some symmetric determinants is addressed
towards the end of the chapter.

2 CONTENTS

The closing chapter is a discussion of the theoretical and practical results and points out ideas for possible
future work.

The appendix contains a brief description of the Maple system and the complete tutorial for the implemented
Maple packages.

The packages for Maple V Release 4 including documentation can be downloaded at:

http://www.cs.uni-sb.de/users/mdenny/Bewohner/mark/Determinant.html

Chapter 1

Introduction to determinants

This chapter is an introduction to determinants. Starting with a short historical overview following [Bri83],
we will then give a formal definition of determinants and cover the required theoretical framework. After a
discussion of possible applications and general algorithms, we will motivate the desire to find determinant
formulas for some specially structured matrices.

1.1 A brief history of determinants

Before determinants were systematically defined and mathematically investigated, they had appeared as tools
to solve linear systems of equations. The Japanese mathematician Seki Shinsuke Kova, following traditional
Chinese methods for numerically solving systems of linear equations, developed expressions that corresponded
to the use of determinants. Independently, determinant-like expressions arose in European mathematics
a little later, when Leibniz in a letter to L‘Hospital (1683) gave a condition, in which circumstances a
homogeneous system of three equations in three indeterminates has a non—trivial solution. His letter remained
unpublished until the middle of the last century and therefore without influence on the development of
determinants.

An immediately influencing approach on the use of determinants as computational expressions was Cramer’s
method for solving linear systems of equations (1750) which he developed researching plain algebraic curves.
He gave a verbal description of “Cramer‘s rule”, where determinants of the coefficients of the system implicitly
appeared as nominator and denominator terms. However, Cramer did not define or investigate the arising
polynomial functions that were later called determinants.

This defining step was due to Vandermonde in 1771 in a paper on linear elimination theory. He defined
determinant functions of n x n (doubly indexed) variables through a recursive process, already discovered by
Bezout while solving systems of linear equations. He also introduced his own notation for these functions.
The order of the variables in a matrix scheme was arbitrary. Vandermonde formulated Cramer’s rule using
these functions and gave a proof (what Cramer had not done). Moreover, he discovered some properties of
these functions: alternating sign when exchanging the indices corresponding to row or column exchanges;
equality to zero when two rows or columns are identical; decomposition into subdeterminants.

Laplace (1772), Lagrange (1773) and Gauf (1801) continued the study of determinants and discovered other
properties and applications. Laplace found the well known method of expanding a determinant. Lagrange
used determinant expressions in number theory and in the computation of the volume of a pyramid in
Euclidean space. Gaufs used determinants in the investigation of quadratic forms in number theory. In the
transformation of a quadratic form, Lagrange (for n = 2) and Gauk (for n = 3) observed special cases of the
determinant multiplication theorem det(*S - A - S) = det(A) - det(S)?.

This was the background of a general systematic study of Cauchy in 1812. He viewed determinants as func-
tions of a quadratic scheme of variables (“systéme symétrique”) and hence related them closely to matrices,

3

4 CHAPTER 1. INTRODUCTION TO DETERMINANTS

even when not yet discussing them as linear mappings. In a generalization of the result of Gaufs, he formu-
lated the determinant multiplication theorem and introduced the composition of two n X n matrices (without
explaining its significance). Cauchy also found several theorems about relations between subdeterminants.
His systematic analysis opened the way to an interpretation of determinants which was dominant during the
entire 19th century.

Grassmann, in his “Ausdehnungslehre” (1844), discovered a possibility to introduce determinants as n—fold
“outer products” of vectors, which he studied in his work. His opinions on the geometry of vector spaces
remained more or less unnoticed during the last century. Like the term of a vectorspace became a fundamental
term in mathematics not until the second and third decade of this century, it was not until the twenties
that a huge interest for a more abstract view of determinants, adjusted to the vector space term, arose.
Consequently, for example Schreier and Sperner in their book on analytic geometry and algebra (1931) gave
an axiomatic definition of a determinant for an n dimensional vector space V' as a multilinear alternating
mapping V™ — IR. Thus, in modern mathematics, the explicit, systematic study of determinants started
by Vandermonde and Cauchy was enlarged with a notational structural aspect. It is also interesting to note
that the theory of determinants is much older than the theory of matrices.

1.2 Definition and basic properties of determinants

In this section we will cover the theoretical background of determinants which is relevant for the following
chapters. Since the reader will be familiar with most of the concepts, we will refrain from a detailed
presentation and give it a more enumerative character following [Jdn91]. A detailed formal introduction
including the basic algebraic terms and the term “matrix” which we assume to be known, can be found in
any textbook on linear algebra (see for example [Jdn91] [Bri83] [SW89]).

Consider quadratic matrices over a ring R, which will be denoted as M (n x n, R). Typically, R will be a field
like @ or a ring of multivariate polynomials. We will define the determinant as a function mapping matrices
over this ring into elements of the ring.

Theorem 1 (and Definition) There is a unique mapping | - | : M(n X n, R) — R with the following
properties:

1. | -] is linear with respect to each row.

2. If the (row) dimension is smaller than n then |A| = 0.

3. |Il=1.

The mapping | - | is called determinant and |A| € R is called the determinant of A.

Proof.

[J&n91] gives a proof of existence and uniqueness.

Since we often refer to special diagonals of a matrix or its determinant, we will agree on some naming
conventions.

Definition 1 Let A € M(nxn, R). We will call the elements a;; fori=1,... ,n the main diagonal of A, the
elements a; ;41 for i =1,...,n —1 the first upper side diagonal and the elements a;y1,; fori=1,... ,n—1
the first lower side diagonal.

When we speak of the diagonal at position k, we mean the elements a;;yy for 0 <k <n—1 or the elements
itk for —(n —1) <k <0 respectively for i =1,... ,n— |k|.

The elements a;,—i+1 fori=1,... ,n will be called the counter main diagonal of A.

1.2. DEFINITION AND BASIC PROPERTIES OF DETERMINANTS 5

012 n-3 n2 nl
-1
-2

-n+3
-n+2
-n+1

Figure 1: Diagonal positions
We will now present important properties of the determinant that will be used in almost all applications.
Lemma 1 Let |-| : M(n x n,R) = R be a mapping with the properties 1. and 2. from above, then the
following holds:
1. If we swap two rows of a matriz A, getting a matriz A', then |A| = —|A'].

2. If we change the matriz A to a matriz A’ by multiplying a scalar X € R to one of its rows, then
| A"} = X-]A]

3. If we add a multiple of one row to another row of A, obtaining A', then |A| = |A'|.
Definition 2 Let A € M(n x n, R). The determinant of order n — 1 obtained from A by deleting the ith

row and the jth column is called a minor of A and is denoted by |A;;|. We will denote a minor of order r,
obtained by deleting rows iy, ... ,i, and columns ji,... 5y bY |Aijigeiy j1ja-jn -

After knowing the definition and the basic properties of determinants, we are interested in actually computing
their value. Laplace’s famous minor expansion theorem provides an important method to recursively compute
the value of a determinant.

Theorem 2 (Minor expansion) If A € M(n x n, R) then

n

Al = (=1)" ay;| Ay

i=1

Proof.

See for example [Jdn91] for a proof that the so defined mapping | - | indeed has the properties 1. - 3. of
Theorem 1.

The previous theorem straightforwardly leads to the following lemma.

Lemma 2 If A € M(n x n, R) is an upper triangular matriz (i.e. a;; =0 for i > j), then the determinant
is the product of the main diagonal elements:

|A|l = a11a22 - - ann.
If * A denotes the transposed matrix of a matrix A = (a;;), i.e. 'A = (aj;), then we have the following result.

Y

Lemma 3 The identity |A| = |*A| holds for all A€ M(n x n,R).

6 CHAPTER 1. INTRODUCTION TO DETERMINANTS

Proof.

Since the rank of rows and columns is equal, we have tkA = rk’A. Obviously, the identity is true for
the identity matrix I, thus it remains to prove that | - | : M(n x n,R) — R is linear in the columns
too. The linearity of | - | in the jth column follows immediately from the column expansion formula |A| =

> (=1)ia;;) Ay, since | Ay is independent of the jth column of A (which is deleted).

A consequence of this lemma is that we obtain a corresponding formula for the determinant expansion of
the ith row of a matrix:

n

Al = (=1)" ay;| Al

j=1
We will need another result concerning the determinant of a product of two matrices.

Lemma 4 If A,B € M(n X n, R) then

[A-B| = |A]-[B].

Closing, we want to take a look at the formula of Leibniz for the determinant of a matrix A € M(n x n, R)
which gives some obvious insight about the complexity of the resulting expression.

Theorem 3 (Leibniz) Let A € M(n x n, R) and II,, be the set of all possible permutations of the numbers
from 1 to n, i.e. the set of bijective mappings = : {1,... ,n} = {1,...,n}. The sign of a permutation is
defined to be 1 if it is result of an even number of exchanges of neighbouring elements and defined to be -1
if this number is odd.

The following formula holds:

|Al = > sign(r) - a12(1)82m(2) -+ G () -
mell,

Proof.

Proving Leibniz’ formula without using the term of a determinant, we have given yet another proof of the
existence statement in Theorem 1. We only have to show that the mapping M (n x n, R) — R defined by
the right hand side of the formula has the properties 1. - 3. of Theorem 1.

1. All of the summands are linear in the rows, thus also the sum.

2. We have to show that the right hand side of the Leibniz formula vanishes if the row rank of A is less
than n, which amounts to proving this for a matrix A with two equal rows. Let row 7 and row j be
equal. If ¢ is the transposition that swaps ¢ and j, and Il¢,., the set of permutations having sign 1
then we can write the right hand side of the Leibniz formula as

Z (Sign(ﬂ-) *Q1x(1) " Anr(n) + Sign(ﬂ- ° U)alrra(l) e anﬂ'o(n))-
mEMeven

Now, @iro(1) " * Onro(n) TesUlts from ajq(1) - apq(n) by replacing the ith factor a;(;y by air(;) and
ajr(j) DY @jr(iy- Since the rows i and j are equal, this changes nothing and the claim follows with
sign(mw o o) = —sign(mw).

1.3. APPLICATIONS 7

3. If A is the identity matrix then we only have one nonzero summand resulting from the identity per-
mutation, thus |I| = 1.

Note that there are n! different permutation of n numbers, thus there are n! products of n elements in this
formula, implying that this formula is not very practical for large n.

1.3 Applications

Determinants arise in all different application areas. We will discuss a number of possible applications in
the following.

1.3.1 Matrix inversion and systems of linear equations
Matrix inversion Every quadratic matrix A over a field K with |A| # 0 can be inverted (such matrices
are called non—singular), i.e. there is a matrix A~! such that A- A~! = I. How can we find this inverse ?

We define the complementary matrix Aof A by

aij = (=1)| 4],

Now we are able to express the inverse A~! of a non-singular matrix as

1 -~
A7l =_— . A
| Al

See for example [J&n91] for a proof.

Observe that every entry of the complementary matrix is a (n — 1) x (n — 1) determinant, hence we would
have to compute n? + 1 determinants to obtain the inverse A~! which is too inefficient. We will mention a
more efficient method below.

Systems of linear equations One of the most important standard problems is the computation of the
solution z € K™ of a linear equation system Az = b with A € M(n x n,K) and b € K". Cramer gave an
explicit formula involving determinants for the solution of a linear system in 1750.

Cramer’s Rule: Let 2,0 € K and A € M(n x n, K) with |A| # 0. If Az = b then

air - a1 b G o0 Qg
a1 e Api—1 bn Anit1 e Ann .
T; = fori=1,...,n.
| Al

However, this is not a practical method. The standard algorithm for solving a linear equation system is
Gaussian elimination (see [GvL96] [Sto94] for details). The main idea is to convert a given system with
elementary row operations into a triangular system which is easy to solve. It is also possible to compute
the inverse of a matrix applying this method (See [Sto94] for details of the Gauk—Jordan algorithm). We
will meet Gaufs’ fundamental method again later because it is also the most widely used algorithm for
determinant computation.

8 CHAPTER 1. INTRODUCTION TO DETERMINANTS

1.3.2 Eigenvalue problems

In many problems in engineering or physics, it is necessary to determine A € C for A € M(n x n,IR) such
that the homogeneous linear equation system

(A= Xz =0

has a non—trivial solution z # 0.

A number A € C is called an eigenvalue of the matrix A, if there is a vector z # 0 with Az = Az. The
corresponding vector z is called the eigenvector of A for the eigenvalue A.

It is easy to see that A is an eigenvalue of A if and only if

|A— M| =0.

Note that p(u) = |A — pl| is a polynomial in p of degree n. The roots of p are exactly the eigenvalues of A.
Hence the eigenvalue problem can be reduced to the problem of finding roots of a determinant polynomial.

It is important to note, however, that there are more efficient methods than computing the determinant
polynomial p(u) and its roots to find the eigenvalues (see [SB90] or [GvL96]).

1.3.3 Volume computation

For finite dimensional real affine spaces like IR" there is a close relation between determinants (and deter-
minant functions) and volume computation (see [SW89] for details).

For example consider the affine vector space R" with basis # = (x1,... ,z,). The following volume formula
holds for a simplex A(P,, ..., P,) with vertices P; = (a1, ... ,a1,) with respect to a corresponding affine
coordinate system:

1 1 1
1 aip a A1n
VOl A(P,. . Pa))| = —
ano an1 e Ann

For a proof and further details see [SW89] .

1.3.4 Geometric primitives

The heart of algorithms in computational geometry are geometric primitives, which can be divided into
predicates and constructors. Predicates determine the control flow of the algorithm and only need the
sign of a polynomial expression, whereas constructors generate new geometric objects and require the value
of a polynomial. After a result of [Val79] it is possible to write every algebraic expression of size e as
a determinant of order e + 2 whose entries are variables or constants. Hence it is possible to formulate
geometric primitives as determinants and therefore most decisions in geometric algorithms are based on the
signs of determinants.

Let us take a look at some examples for geometric predicates:

1.3. APPLICATIONS 9

Sideness test Given three points p = (p,1y),q¢ = (42, qy), and 7 = (r,,7,) in R?. The sideness query is:
Does the point r lie left, right, or exactly on the line passing through p and ¢?

How can we formulate this sideness test in terms of a determinant?
What are the conditions that the three point p, g, and r are collinear? Given a line ax + by + ¢ = 0, all three

points must lie on the same line, which leads to the equations:

apy +bpy +c =0
agy +bgy +c=0
ary + bgy +c = 0.

Writing this system in matrix form, we get

Pz Py 1 a
Gz qy 1 : b = 0.
Ty Ty 1 c

This homogeneous system has a non—trivial solution if and only if

Pz Py 1
D:=|gq g, 1|=0.
Ty ’I“y

So, p,q and r are collinear iff D = 0. The point r is left from the line through p and ¢ iff D > 0 and right
from the line through p and ¢ iff D < 0. Hence, the sideness test can be reduced to the test of the sign of a
determinant.

In circle test Given four points p,q,r, s € IR?, the query is: Does s lie on the circle through p,q and r ?
This test is crucial in the computation of Voronoi diagrams for example. We try to transform this query into
determinant notation again. A general equation describing a circle K with center ¢ = (c,,z,) and radius r
is

K= e) + - =1,

which can be written as

ci+c§—r2—2cxm—2cyy+x2+y2 = 0. (1.1)

the points p, g, r, s satisfy the equation (1.1) which leads us to the linear system

Let us denote A := ¢} +¢; —r?, B := —2¢, and C := —2¢,. Now we want to find A, B, and C such that all

Pz Dy Dy +D;
Qy Q§+q§
Tg Ty rg—}—rg

Yy

Se Sy So+T

—
)
)
Qe

Hence, we know that s lies on the circle through p, ¢, r iff

10 CHAPTER 1. INTRODUCTION TO DETERMINANTS

Pr Dz DP2AD
G Gy q3+q§ _ 0
e Ty T2A4T2 | T
x Yy x g

Se Sy S2 + 5y

o
I
— e

A little thought establishes that s lies in the interior of the circle K iff D > 0 and in the exterior iff D < 0.

Of course it is also possible to formulate corresponding determinant tests for arbitrary dimensions.

1.4 General algorithms and practical results

We will briefly present several algorithms for the computation of general integer order determinants and
discuss their efficiency distinguishing between rational and polynomial matrix entries.

1.4.1 Standard algorithms

Cofactor expansion We use the expansion theorem of Laplace (see Theorem 2) to receive a first method:

|A| = a11|A11] — a12]|Ar| + - + (—1)n+101n\A1n\-

Hence, the computation of a determinant of order n involves the computation of n subdeterminants of order
n — 1, as well as n multiplications and n additions, leading to a cost complexity of

Cn)=nC(n—-1)+n<e-nl

Dynamic programming This method essentially employs cofactor expansion, however avoiding succes-
sive computation of the same subdeterminants. First we determine the (’;) determinants of all 2 x 2 minors
of the first two rows, then the (’;) determinants of all 3 x 3 minors of the first three rows, etc. until the
entire determinant is computed.

This leads to a cost complexity of

C(n) = nl (Z)k = n(2"! - 1).

k=

Gaussian Elimination and variants The goal of Gaussian elimination is to transform a matrix A
into triangular form using elementary transformations. Gaussian elimination produces the II- A = L-U
decomposition (if we also consider possible necessary pivoting) and since L is a lower triangular matrix with
maindiagonal 1, U is an upper triangular matrix and II is a permutation matrix, we have |A| = £|U].

Gaussian elimination can be formulated as a triple-loop procedure:

Algorithm

sign:=1
fork=1ton—1do

Pivot (to avoid division by zero) and update sign

1.4. GENERAL ALGORITHMS AND PRACTICAL RESULTS 11

fori=k+1tondo
forj=k+1tondo
aij = aij — (@i [Q) ar;j
od
od

od

return sign - [[;L; au.

The resulting asymptotic complexity is O(n?).

One of the disadvantages of Gaussian elimination are the occurring divisions. Cross multiplication eliminates
the divisions but leads to an “explosion” of the size of the matrix entries. Bareiss [Bar68] [Bar67] uses the
observation of Camille Jordan that the pivoting element of the previous iteration divides each entry to derive
fraction free algorithms.

The elimination steps of the different methods are (with a%c) denoting the (i, j)—entry in iteration k):

1. Gaussian elimination: az(.;?ﬂ) = agf) - (agz)/agz))ag;).
2. Division free elimination: ag;.”l) = agz)agf) - agllz)ag;).

(K+1) _ (g0 () _ o (6) ()) (k1)

3. Fraction free one-step elimination: a;; = (ayp a;;" — @ agy)/ ag_y oy

4. Fraction free two—step elimination: see [Bar67]

Modular Arithmetic Here we find an application of a classic algebraic technique. We assume integer
entries and choose a set of primes such that the value of the determinant is guaranteed to be smaller than
the product of the primes (e.g. using Hadamards inequality to obtain an upper bound for the determinant).
Then we evaluate the determinant modulo each of these primes and use the Chinese remainder theorem to
reconstruct the original determinant.

The complexity of this approach depends on the used evaluation strategy. Gaussian elimination requires
modular inverses which is expensive (although it is plausible to determine modular inverses through table
lookup for sufficiently small primes). Dynamic programming avoids modular inverses but requires more
operations.

1.4.2 Practical results and the problem of exact computation

Rational entries Comparing the efficiency of the presented determinant algorithms for rational entries it
may be observed (see Fortune and Van Wyk [FW93]) that Gaussian elimination, especially the fraction free
variants, are superior to minor expansion or dynamic programming for determinants of dense matrices of
higher order (n > 4), as the asymptotic runtime suggests. Modular techniques can produce similar results
as Gaussian elimination.

Talking about practical computation we have to address another topic, the problem of exactness. Recall the
use of determinants in geometric algorithms. Geometric predicates determine the control flow and hence
have to be evaluated exactly. This means that our determinant computation routine has to produce ezact
results. However, the standard use of floating point arithmetic is not exact (see Goldberg [Gol91]). If
the bitlength of the entries (let us consider them to be integers) is large or the matrix dimension is large,
then Gaussian elimination (and minor expansion) can fail since the bitlength of intermediate results can
exceed the maximal bitlength expressible by the machine. This exactness problem leads to a whole new
direction in computational geometry, the field of exact computation. Software packages providing exact

12 CHAPTER 1. INTRODUCTION TO DETERMINANTS

computation have been developed with the disadvantage of slow computation speed. Expression compilers
and lazy evaluation tried to adapt the precision to the input and obtained good results. There have also
been investigations for new algorithms computing the sign of a determinant using floating point operations.
Clarkson [Cla92] [BY96] proposed an algorithm first doing a modified Gram—-Schmidt orthogonalization
and then computing the determinant of a well-conditioned matrix. Following this approach, Avnaim et
al. [ABDT97] found a safe method for 2 x 2 and 3 x 3 determinants (extended to n x n determinants by
Bronnimann and Yvinec [BY97]), the so—called lattice method.

Polynomial entries The computation of determinants having polynomial entries has to be discussed
separately. Since the multiplication (and division) of polynomials cannot be done in constant time, Gaussian
elimination or variants are not superior to minor expansion anymore. Especially for sparse matrices, minor
expansion leads to faster results. Horowitz and Sahni [HS75] and Sasaki and Murao [SM82] propose special
algorithms for polynomial entries and investigate their efficiency.

1.5 Motivation

Now we are familiar with determinants and have seen different algorithms for determinant computation. So
why do we want to have determinant formulas for specially structured matrices when we have methods to
compute every general determinant ?

Consider the following determinant:

2
1 = o
— 2
Va=|1 2o 3
2
1 z3 =3
If we use minor expansion we obtain that
2 2 2 2 2 2
Vi = @oxs — 2523 — 2125 + T7T3 + 125 — T1T2. (1.2)

Surprisingly, even a computer algebra system like Maple that provides efficient symbolic computation fails
to compute the determinant of an equally structured matrix (i.e. wv;; = :Uf_l) of dimension 8 since the
size of the intermediate results cannot be handled. However, the determinant V,,, known as Vandermonde
determinant, has the simple formula

Vo= [(@ —=). (1.3)

1<i<j<n

If we blindly expand the determinant then we also often loose its structure, like it is not immediately obvious
from (1.2) that V3 = 0 for z; = x;, whereas the representation V3 = (23 — x2)(z2 — z1)(x3 — 1) obtained by
(1.3) gives immediate insight, offering a clearer simpler structure.

We give another motivating example: Recall the possibility to formulate geometric predicates as determi-
nants. Erickson and Seidel [ES95] discuss the spherical degeneracy problem in IR?. They want to show that
the following determinants formulating special in—sphere tests are nonzero:

e Two distinct points 57 = (s1,0,...,0) and #; = (¢1,0,...,0) on the z;—axis, one point #; = t; - ; from

Y

1.5. MOTIVATION 13

each of the other axes, and one point Z = (¢, ... ,¢) from the main diagonal in R¢:

1 s 0 - 0 &
1 4 0 - 0 ¢
1 0 t ot

S = 2 2

0
1 e 0 tg t§2
1 ¢t - t t dt 442
e Two distinct points £ = (¢,... ,t) and 5 = (s,...,s) from the main diagonal and one point #; = t; - ¢;

from each axis in R%:

1 ¢t t - t d?

1t 0 - 0 ¢
|1 0 t P

M . .0 :

1 0 -+ 0 tg ¢t

1 s - s s ds? o

Showing S; # 0 and Sz # 0 for a certain range of the entries (see [ES95]) proves that there are no spherical
degeneracies for these examples. Again we are looking for an easy determinant formula such that we can
show that the determinant does not vanish for given ranges of the entries.

We see that it is often desirable to know explicit determinant formulas for specially structured matrices of
arbitrary order and our aim will be to derive general determinant formulas for a number of important matrix
classes such that it is possible to automatically compute a formula for any specified special matrix of these
classes.

14

CHAPTER 1. INTRODUCTION TO DETERMINANTS

Chapter 2

Frame forms

In this chapter we will investigate determinants of matrix classes that only have the bordering rows and
columns as well as the main diagonal nonzero. We will proceed successively allowing more elements to be
nonzero starting with the simplest classes that can be formed. Various interesting examples will illustrate
the importance of these matrix classes. We will also show how it is possible to transform matrices with
arbitrarily positioned nonzero rows and columns into that form.

The end of the chapter contains a description of the implementation of our results.

2.1 Determinants of 7—matrices

First of all, we will take a look at a matrix class where only the first row, the main diagonal and the first
lower side diagonal consist of nonzero elements. The matrices of this class look like the mirrored digit 7.
Some interesting properties of determinants of this matrix class can be established.

Definition 3 A matriz A of order n is called T-matrix, if only the first row, the main diagonal and the first
lower side diagonal are nonzero.

r:{1,...,n} = R, r(i) = ay; is called generating function of the first row.
d:{1,... ,n} = R, d(i) = a;; is called generating function of the main diagonal.
e:{1,...,n—1} = R, e(i) = aj+1,; is called generating function of the first lower side diagonal.

Note that we have an overlapping corner element a1y = d(1) = r(1) in this setting.

We will refer to the corresponding determinant |A| as 7—determinant or 7T—form and often denote it as
|A] = FORMT7(n,r,d,e).

Example

M is a T-matrix of order n + 1 with generating functions 7(i) = ap—it1, (i = 1,... ,n+ 1), d(1) = ay,
dii)=z(i=2,...,n)and e(i) = —-1fori=1,... ,n.

ap OGp—1 QAp-2 -+ 41 Qo
-1 T 0 S
0 -1 T
M = (2.1)
-1 =z 0
0 0 -1 =z

15

16 CHAPTER 2. FRAME FORMS
We will now prove a general determinant formula for 7-matrices.

Theorem 4 Let A € M(n x n, R) be a 7-matriz with generating functions r,d, and e then

n -1 n
A= S0 [ety T de)- (2.2)
=1 k=1 k=Il+1

Proof.
We will prove identity (2.2) by expansion of the first row:

n

|A| = Z(—l)l“r(l)\AllL (2.3)
1=1
Let 1 <1 < n, then
e(1) d(2) 0 0 0 0
0 .
e(l—2) d(l—1) 0 0 0
agl=| O 0 el-1) 0 0 0
=1 o 0 0 d(l + 1) 0 0
0 0 0 e(l+1) di+2)
: : : . : - 0
0 0 0 0 e(n—1) d(n)

We see that the main diagonal elements of |Ay;| are e(i), (i =1,...,1—1) and d(i), (i =1+ 1,...n). If we
expand |A;;| and the [— 1 resulting minors by the first column and the following minors by the first row
then we get

-1 n
Ayl =TT e IJ 40 (2.4)

k=1 k=141

Plugging (2.4) in (2.3) implies the theorem.

Note that we could also have proved the theorem expanding the last column and thus getting a simple
recurrence but this proof illustrates the resulting formula a little better.

Let us apply the theorem to our example (2.1). We get the nice determinant formula

n+1
(M| = (=) ap g (=172 = apa™ +an_12™ 4+ arz + ao.
=1

Observation

Any polynomial of degree n can be expressed as a 7-determinant of order n+1. In fact any binary expression
p(x,y) = apr™ + a1x" ty + ...+ a,_17y" ' + a,y™ can be written as 7-determinant of order n + 1:

2.1. DETERMINANTS OF 7-MATRICES 17

a ar o Gpo1 Gp

pz,y)= 0 y =z

Now we will focus on the orientation of 7—matrices. How does the determinant change when we rotate the
matrix or when we “mirror” the diagonals. We will see that these minor changes can easily be retransformed
into the standard 7—form.

Definition 4 Let A be a matriz of order n with generating functions r®,d® e®
1. AW s called 1-oriented 7-matrix if (1) (i) = aﬁ),d(l)(i) =all), e =all), ..
2. A®) s called 2-oriented 7-matrix if r(? (i) = al? d? (i) = al?) e (i) = al?, ..
3. A® is called 3-oriented 7-matrix if r® (i) = a'>), d®) (i) = a!¥ , e®) (i) = o)

4. AW s called 4-oriented 7-matrix if () (i) = ag),d(‘l) (1) = al? e (1) = al¥

[Y R 1,141
5. A®) s called 5-oriented 7-matrix if r(%) (i) = aﬁ),d(‘r‘)(i) = a§,57)17i+1,e(5) (i) = agi)l,nﬂﬂ
6. A is called 6-oriented 7-matrix if (% (i) = agz),d(ﬁ)(i) = ‘122—1’+1=e(6) (i) = a;ﬁn_z
7. A s called 7T-oriented 7-matrix if r(7) (i) = agi),dm (i) = a5727i+1,e(7) (i) = afnﬂ

8. A® s called 8-oriented 7-matrix if r(®) (i) = agf),d(g)(i) = 022—1'-1-1:@(8) (i) = a'®

Note that a 1-oriented 7-matriz is the standard form we discussed above.

NONONCIN

1-oriented 2-oriented 3-oriented 4-oriented

S N LV

5-oriented 6-oriented 7-oriented 8-oriented
Figure 2: Shapes of oriented 7—forms.

Corollary 1 Let A be a l-oriented 7-matriz of order n with generating functions r",d® e® and define
the “reverse” ff(i) = f(n — i) for a generating function f : {1,...,n} — R, then the following identities
hold:

L 1AD] = ForMmT(n, r¥),dD), eM),

Y

2. |A®)| = ForMT7(n, r®", a@" @),

18 CHAPTER 2. FRAME FORMS

3. |A®)| = ForM7(n, r®", d®" @),

/ |AW] = ForRMT(n, 7@, d(®, e®),

5. |A®)| = (=1) L3 Form7(n, r®", d®)).

6. |A®) | = (=) 3] FormT(n,r©®,d®).

7. |AD| = (=) B Form7(n, 7™, dD" ™).

8. |A®)] = (=) LE] Form7(n, r®™ a®" ®™).
Proof.

1. Follows from definition.

2. We swap column k with column n — k + 1, for k = 1,... | 2] and get a 8-oriented 7—form. Now we
proceed as stated in 8. below.

3. TABG) = A®) if) = (D) ¢B) = g2 ¢B) = ¢(2) Alternatively, we could swap the last row () up to
the top getting the desired form which would result in a slightly different but equivalent formula.

4. A0 = AWif 1) = p2)_ g6) = g2 () = ((2),

5. We swap column k with column n—k+1,for k =1,... |2 | and get a 1-oriented 7—form with a reversed
row function r(®".

6. Transposing A(®) yields the 7-oriented 7-form with reversed diagonal functions d(ﬁ)R,e(ﬁ)R. Swapping

row k withrown —k+ 1, for k=1,..., L%J leaves us with the desired 1-oriented 7—form reversing

the diagonal functions another time, thus reaching their original form.

7. As described in 6. we swap row k with rown —k+ 1, for k =1,... L%J and get what we want with
reversed diagonal functions.

8. Transposing A®) yields the 5-oriented 7-form with reversed diagonal functions. Using 5. yields the
claim.

In the following we will denote an s—oriented 7—form of order n with generating functions r,d,e with the
function call

ForMm7,(n,r,d,e).

2.2 Determinants of arrow matrices

In this section we are investigating the determinant of arrow shaped matrices. We will also show how we
can compute a variant of arrow determinants using determinants of 7—matrices.

Definition 5 An n X n matriz A is called an arrow matrix, if only the first row, the first column and the
main diagonal consist of nonzero entries.

r:{1,...,n} = R, r(i) = ay; is called generating function of the first row.

c:{l,...,n} = R, c(i) = a;; is called generating function of the first column.

2.2. DETERMINANTS OF ARROW MATRICES 19

d:{1...,n} = R, d(i) = a; is called generating function of the main diagonal.
Note that we have an overlapping corner element a1; = d(1) = r(1) = ¢(1) in this setting.

The corresponding determinant |A| will be called arrow determinant or arrow form and will be often denoted
as ARROW(n,r, ¢, d).

Example
di ry 73 T T'n
Co d2 0 L 0
A= C3 0 :
. . dn—l 0
cn 0 .- 0 dp,

A is an arrow matrix of order n with diagonal generating function d(i) = d; , row generating function
r(1) =dy, r(i) =r; (fori=2,...,n) and column generating function ¢(1) = dy, ¢(i) = ¢; (for i = 2,... ,n).

Now we will derive a general determinant formula for arrow matrices. We will try to use minor expansion
with the goal to reach trivial minors (like diagonal minors) as soon as possible.

Theorem 5 The determinant of an arrow matriz A of order n with generating functions r,c and d is

Al =T]d) = > r@e@) I dk). (2.5)
=1 =2 k=2
k#l

Proof.

We will prove identity (2.5) by expansion of the first row of A:

n n

1Al =) (=) aylAyl =Y (=D Fr0)] Aul. (2.6)

=1 =1

Assume that we have 2 <1 < n, then

o2 d2) 0 0 0 0
c(3) 0 d(3)
' 0 0 0
R R B TR
cl+1) 0 0 0 di+1)
: : : 0
c(n) 0 0 0 0 d(n)

Swapping row [up to the top, we get

20 CHAPTER 2. FRAME FORMS

c(l) 0 0
«(2) d(@2)
0
Aul=CD" oy 0 L da -y
cl+1) o d(l+1)
: : _ S
c(n) 0 0 dn)

= (=1)"2c() [d(k). (2.7)

Substituting (2.7) back in (2.6) we get

n

Al =) A |+ 3 (=D @) (-1 2e() [] dik) = d()|4n] - 3 r@e) [).

1=2 =2

~N

k=
K

Since |A;;| is a diagonal minor, we have |A1;| = [[,_, d() and the theorem follows.

Note that we could also have proved this by solving a simple recurrence formula but our proof here is a little
more illustrative.

At the moment we are only dealing with arrows pointing to the upper left corner of the matrix (i.e. the
arrow head is a11). How does the determinant of an arrow shaped matrix change when the arrow points at
other corners of the matrix?

To deal with this issue we define the orientation of an arrow matrix.

Definition 6 Enumerate the corner elements of the matriz clockwise starting with a1, i.e.

COTNET| = A11, COTNETY ‘= A1y, COTNET3 = Upp, COTNETs ‘= Qp1-

An arrow shaped matriz A is called s—oriented arrow matrix if the arrow head is corners.

S

The diagonal-, row- and column generating functions r'®), c(8), d®) of an s—oriented arrow matriz A are again

Y

defined such that their values coincide in the arrow head.

1-oriented 2-oriented 3-oriented 4-oriented

Figure 3: Shapes of oriented arrow forms.

2.2. DETERMINANTS OF ARROW MATRICES 21

Example

|A| is a 4-oriented arrow determinant:

c(1) 0 0 d(1)
c(2) 0 d(2) 0
4] =
c(n —2) 0 d(n — 2)
c(n—1) d(n-1) 0 0 0
d(n) r(2) r(3) r(n—1) r(n)

Note that 1-oriented arrow determinants are the standard form which we already discussed above.

Now we try to obtain similar results for the determinant of s—oriented arrow matrices (s = 1,2, 3,4).

Corollary 2 Let A®) be an s—oriented arrow matriz of order n with generating functions (), ¢() d() for
row, column and diagonal respectively, then the following identities hold:

1. |AM| = Arrow(n, r() M) dM).

2. 1A®)| = (=1)l3] ArRrOW(n, 7" c®), d?).

3. |A®)| = ARROW(n, r®" 3 d®™),

4 1AW = (=) 2) ArRrROW(n, r@), (@).

Proof.

1. This follows from identity (2.5).

2. If we swap column k with column n — k+ 1, for k=1,... L%J , we get the desired 1-oriented arrow
form with the reversed row function r(®".

3. In this case we proceed in two steps: First we swap column k with columnn—k+1, for k=1,... %],
receiving a 4—oriented arrow form with reversed row function, then we swap row k£ with row n—k+1, for
k=1,... L%J and obtain the 1-oriented arrow form with reversed row and column functions r(3" , "

and reversed main diagonal function d®". The sign factor cancels out.

4. Here, we simply swap row k with row n —k+ 1, for k = 1,... [%J and get the desired form with

reversed column and diagonal functions 0(4)R,d(4)R.

In the future we will denote an s—oriented arrow form of order n with generating functions r, ¢, d with the
function call

ARROW,(n, T, ¢, d).

Presently, the shaft of an arrow shaped matrix was always the main diagonal or counter main diagonal.
Moving the arrow shaft diagonally, i.e. from the main diagonal to one of the side diagonals, simplifies the
determinant. If the shaft is moved diagonally for more than one position, the determinant becomes zero.
Moving one position, obvious clever expansion results in the product of the diagonal elements multiplied by
the last element of the row or column with a possible sign factor.

22 CHAPTER 2. FRAME FORMS

If we also allow the first upper or lower side diagonal to be nonzero, we are speaking of fat arrow matrices.
It will be shown how their determinant formula can be computed with the help of 7-determinants.

NN

fat arrow form moved arrow shaft
Figure 4: Special arrow forms.

Theorem 6 Let A be a fat arrow matriz of order n with generating functions r,c,d and function

e:{l,...,n—1}, e(i) = aii+1 generating the first upper side diagonal, then

Al =] d@) +> (-1 e@) [dk) Form7(l 1,7, ,e.d), ,), (2.8)
=1 1=2 k=I+1
where fp,. p, simply means the function f restricted to the range {pi,... ,p2}.

The determinant of a fat arrow matriz will be denoted as |A| = FATARROW(n, 1, ¢, d,€e).

Proof.
We expand the first column:

n

Al = 3" (=1)UHDe(t)|Ap .

=1

Consider 2 < | < n, then we have:

r2) - r(l-1) r(l) r(l+1) r(n—1) r(n)
d(2) e(2) 0 0 0
0 .
dil—-1) e(l-1) 0 0 0
|An| =
0 0 0 dil+1) e(l+1)
. 0
dn—1) e(n—-1)
0 0 0 0 d(n)
We see that the submatrix generated by rows I+ 1,... ,n and columns [+ 1,... ;n is an upper triangular
matrix, hence
r(2) r(2) r(3) r(l)
di2) e2) 0 0
[Aul=] d®)| 0 d@B) e@)
k=1+1 : . . . 0
0 0 di-1) e(l-1)|,_,

2.3. DETERMINANTS OF N-MATRICES 23

The determinant above is the desired 7—determinant of order I — 1. The special construction of this 7—
determinant makes it obvious that substituting ! for n in the corresponding determinant of order n — 1 yields
what we want.

The function r from 2,...n is the row generating function of the 7-determinant, the function e plays the
role of the main diagonal generating function and d from 2,...n — 1 is the generating function of the first
lower side diagonal. The theorem follows.

We observe that it is sufficient to compute the determinant of the 7-matrix of order n — 1 only once.

It remains to note that it is possible to transform fat arrow matrices of different orientation or side diagonal
position into the previous form using the same methods as in Corollary 2.

2.3 Determinants of N—-matrices

In this section we will focus on another class of matrices that only have the main diagonal and two bordering
rows or columns nonzero. Note that arrow matrices had one bordering row and one bordering column
nonzero. We will now examine the effect that this minor shape change has on the determinant.

Definition 7 A matriz A of order n is called N-matrix, if only elements of the first column, the last column
and the main diagonal are nonzero.

c1:{1,...,n} = R, ¢1(i) = as is called generating function of column 1.
cn:{1,...,n} = R, ¢,(i) = aip is called generating function of column n.
d:{1,...,n} = R, d(i) = a;; is called main diagonal generating function.

Note that we have overlapping corner elements a;; = ¢1(1) = d(1) and ann = cn(n) = d(n) in this setting.

The determinant of an N-matriz will be referred to as N—determinant or N—form and will be often denoted
as NFORM(n, ¢, ¢a,d).

Example

A is an N-matrix of order n with diagonal generating function d(1) = ay,d(n) = by,,d(i) = d; (for i =

2,...,n — 1) and generating functions ¢; (i) = a; and ¢, (i) = b; for column 1 and n respectively:
ay 0 0 e 0 b1
a» d2 0 0 b2
as 0 d3 : b3
0
Ap—1 0 0 dnfl bnfl
an 0 0 0 bn

We will see now that the determinant of this matrix class is even simpler than the determinant of arrow
matrices.

Theorem 7 The determinant of a N-matriz A of order n with column generating functions ¢, and ¢, and
main diagonal generating function d is

n—1

4] = (e1(Dea(n) = ea(Der(n) T d().

=2

24 CHAPTER 2. FRAME FORMS
Proof.
We expand A by the first row:

1Al = er(D]An| + (=1)" en(1)]Arnl-

It follows immediately that |A;1| = cn(n) ;:21 d(l). Examining |A1,|, it is obvious that after swapping the
last row up to the top (n — 2 row exchanges) we are left with a lower triangular matrix. Hence |A41,| =
(—1)"2¢;(n) 1=, d(1) and the theorem follows.

After having established this identity for N—forms we want to generalize it for slight modifications of this
matrix class (like in the case of oriented arrow matrices).

Definition 8 Let A be a matriz of order n with generating functions fO,¢g®, and d.

Note that the generating functions are overlapping again and that the 1-oriented N-matrix is the standard

N-matriz discussed above.

1-oriented 2-oriented 3-oriented 4-oriented

Figure 5: Shapes of oriented N—forms.

Example
Determinant of a 4-oriented N-matrix A of order n with f (i) = f;, ¢V (i) = g;,d P (i) = d;:
fi fo fa o fac1 I
0 - e 0 d 0
Al =
: . dn_o :
0 dypy O oo oo 0
91 92 93 9n—1 Yn

We will now show how determinant formulas for all orientations of N-matrices can be obtained.

Corollary 3 Let A" be an l-oriented N-matriz of order n with generating functions f, g, d®, then the
following identities hold:

2.3. DETERMINANTS OF N-MATRICES 25

1. |AM| = Nrorm(n, f1), g1 dM).)

2. |A®)| = NrorMm(n, f2), g d?).

3 |A®)| = (=1)L 2] NrorM(n, ¢, F3),d®).

/. 1AW = (=1)L2INForM(n, g@), O, d®).
Proof.

1. This follows from Theorem 7 with d = dV),¢; = f(V, ¢, = g,
2. Since |'A| = |A|, this follows again from Theorem 7 with d = d®,¢; = f?), ¢, = g2,

3. If we swap column k with column n — k4 1 for k = 1,..., | 2] then we obtain a I1-oriented N—form
and the claim follows from 1. with () = ¢®3) and ¢(*) =),

4. Follows from 3. with f®) = f(4) ¢B) = ¢ and d®) = d®" since LAl = | Al

Having the first upper or lower side diagonal nonzero instead of the main diagonal, it is straightforward to
see that swapping the last row up to the top (or the first row down to the bottom, respectively) we obtain
the normal N—form. If the nonzero diagonal is beyond that, the determinant will be zero.

How does the determinant of a N shaped matrix change, if we introduce another neighbouring nonzero
diagonal? It will be shown that an easy reduction to determinants of 7-matrices can be made. For that
purpose we examine modified 2—oriented N—forms.

Corollary 4 Let A be a 2-oriented N-matriz of order n with generating functions f,g,d and additional
function e(i) = aj41,;1 =1,... ,n — 1 generating the first lower side diagonal, then

|A‘ = g(n)FORM7(n -1, f‘l..n—l’d‘]..n—17e‘1..’n72) — f(n)FORM?(n — 1’g‘1""’1’d\ﬁs(_li’eh”"’J’

with
~_ | g(k) ifi=1
F=ua (i) = { fi) if2<i<n-1.
Proof.
Expanding the last column of A we get |A| = g(n)|A,n| + (=1)" L f(n)|A1,].

| Apn| obviously is the first claimed 7—form and swapping row n — 1 of |A1,| up to the top we get the desired
second 7—form while the sign factor reduces to —1.

We will call matrices of this type fat N-matrices. Observe that it is straightforward to transform fat N-
matrices of other orientations into this standard form.

2 CHAPTER 2. FRAME FORMS
2.4 Determinants of R—matrices

In the two previous sections we discussed determinants of matrix classes that only had two bordering rows
or columns and the main diagonal nonzero. Now we are interested in allowing another bordering row or
column to be nonzero.

Definition 9 A matriz A of order n is called R—matrix, if only the first and last column, the first row and
the main diagonal are nonzero.

e {l,...,n} = K, f(i) = a;1 is called generating function of column 1.

e {l...,n} = K, g(i) = ain is called generating function of column n.
r:{1,...,n} = K, h(i) = ay; is called generating function of row 1.
d:{1,...,n} = K,d(i) = a;; is called generating function of the main diagonal.

Note that we have overlapping corner elements a;; = (1) = ¢1(1) = d(1),a1, = r(n) = c2(1) and ap, =
d(n) = ca(n) in this setting.

The determinant of an R—matriz will be referred to as R—determinant or R—form and will be often denoted
as RFORM(n, ¢, ¢a, 1, d).

Example

BN

I
© Ut =
e e R e N
o wo —
OB OO -
ot ot Ot Ot Ot

Now we want to derive a general determinant formula for R—matrices.

Theorem 8 Let A be an R—matrixz of order n with generating functions ci,ca,r,d, then we have

[A] = =1 (MARROW(n = 1,7 1=0a0), €31,y pimeact) + 2 () ARROW(n = Ly, ey, o,) (29)
where f|, . simply means the function f limited to the range {1,... ,n — 1} and
N og(k) ifi=1
Fmow (i) = { fi) if2<i<n-—1.
Proof.

We will prove identity (2.9) by expansion of the last row of A:

|A| = (=1)""ei(n)|Ani| + ea(n)|Annl,

where

2.4. DETERMINANTS OF R-MATRICES 27

r(2) r(3) r(n—1) ca(1)
di2) 0 0 c2(2)
Al =] 0 d(3) (2.10)
S 0 ;
0 - 0 dn-1) cn-1)
and
c1(1) r(2) r(3) r(n—1)
c1(2) a2 o .- 0
Al = | c1(3) 0 d(3) : (2.11)
: ; g : 0
cailn—1) 0 o0 dn-1)
It is obvious from (2.11) that |Ap,| = ARROW(n — 1,7, ey oy d)y 1)
After swapping the last column n — 1 through to column 1 in (2.10), we see that
|Ani| = (_l)n*2ARROW(n -1, T“}:ca(ln €24y d }:C%(P)’
which implies the theorem.

There are several other ways to pick three nonzero bordering rows or columns and a main diagonal to get
matrices that are slight modifications of R-matrices. In the following we define oriented R-matrices to take
this matter into account and show how their determinants differ from those of normal R—-matrices.

Definition 10 Let A be a matriz of order n with generating functions f,!) ¢ (") and dV.
1. AW s called 1-oriented R-matrix if f) (i) = aﬁ),g(l)(i) =al) () = aﬁ),d(l)(i) =all).
2. A®) s called 2-oriented R-matrix if f) (i) = ag),g@) (1) = a'?),) (i) = al? d? (i) = al?.
3. A®) s called 3-oriented R-matrix if £ (i) = al(f),g(3) (@) = a® h® () = a!¥, d® (i) = a!?.
4. AW is called 4-oriented R-matrix if f(*)(i) = a%),g(‘l) (i) = al® n® (1) = agf),d(‘l) (1) = ald.
5. A®) s called 5-oriented R-matrix if £ (i) = agf),g(S) (1) = a\?, RO (i) = aﬁf),d(S)(i) =q!?
6. A®) is called 6-oriented R-matrix if f() (i) = agg),g(‘a) (1) = a'®, h(®) (i) = al® dO© (i) = al®)
7. A is called 7-oriented R-matrix if f(7)(i) = alq),gm (i) = a(.7), R (i) = al”), d™ (1) = a§7

8. A® s called 8-oriented R-matrix if f®) (i) = agf),g(g) @) =a'®, n® () = agf),d(g)(i) = agg

Note that the generating functions are overlapping again and that the 1-oriented R—matriz is the standard
R-matriz discussed above.

28 CHAPTER 2. FRAME FORMS

1-oriented 2-oriented 3-oriented 4-oriented

5-oriented 6-oriented 7-oriented 8-oriented

Figure 6: Shapes of oriented R—forms.

Corollary 5 Let A be an l-oriented R-matriz of order n with generating functions f®,g® h® dD | then
the following identities hold:

1. AW | = Rrorm(n, f1), g a1, qa1),

2. |A®)| = RForRM(n, g7, " 2" a7y,

3. |A®)| = RroRM(n, g® ", O BB 4@,

4. |AW| = RrorMm(n, f@), g, h4D, d4),

3 |A®)| = (=1) L3 RrorM(n, g®), F6), hO" 4.

6. |A®) | = (=) L3 Rrorm(n, FO7, g©® h©) 4©).

7 1AM = (=) L3 RrorM(n, FOF, g7 1D, 40",

8 |A®)| = (=1) 3] Rrorm(n, g®, F&), A" 4®).
Proof.

1. Follows from Theorem 8.

2. Follows from 3. since ‘A = A®) for identical generating functions.

3. Swapping row k with row n — k+ 1, for k = 1,... | 2| , we obtain a 5-oriented R-—form with reversed

generating functions f(), g, d®). Now we swap column k with column n — k + 1, for k =1,... 2]
and get the standard form with also h(*) reversed and f and g exchanged.
4. Follows from *A®) = AD),

5. Swapping column k with column n —k+ 1, for k = 1,... L%J does the trick, getting a reversed h(®)
and exchanged) and ¢(®.

6. Transposing leads us to a 7-oriented R—form with transposed d(®).
7. Swap row k with row n —k+1, for k =1,...| 2| and get the desired form with reversed f("), ().

8. Transpose and get 5-oriented R—form with reversed d(®),

2.4. DETERMINANTS OF R-MATRICES 29

In the future we will denote an s—oriented R—form of order n with generating functions f, g, h,d with the
function call

RFORM,(n, f, g, h,d).

After investigating the standard R—form in all orientations we will have a look at minor changes. Consider
moving the diagonal again: As before, we are left with a zero determinant if we move more than one position
diagonally. Moving only one position diagonally, clever expansion results in a triangular matrix and an arrow
form which leads to an easy determinant formula.

Now we will study how the introduction of a nonzero side diagonal changes the determinant of such matrices.

Unfortunately it is necessary to distinguish the case of introducing a nonzero first upper side diagonal, called
fat—1 R—matriz, and the case of introducing a nonzero first lower side diagonal, called fat-2 R—matriz, as we

will see in the following.

fat-1 R-form fat-2 R-form
Figure 7: Shapes of fat R-forms.

Corollary 6 Let A be an R—matriz of order n with generating functions ¢, ca,r,d and additional generating
function e(i) = a; ;11, called fat-1 R-matriz, then we have

Al = g()FATARROW(n — L7y, 1)y oysd)y uis €)as)
—f(n)FATARROW(n — 1, THi?—(P , 02‘1""711d‘if:?_(ll)’e‘l--n72).

Proof.
Expanding the last row of A yields |A| = (=1)"*¢i(n)]Api| + ca(n)|Apnl-

|Ann| is already the needed fat arrow form and swapping the last column of | A,1| through to column 1 results
in the second fat arrow form and a simplification of the sign factor to —1.

This was an easy reduction to fat arrow matrices. However, the next case will produce a rather involved
formula.

Corollary 7 Let A be an R—matriz of order n with generating functions ¢y, ca,r,d and additional generating
function e: {1,... ,n—1} = R, e(i) = a;t1, called fat-2 R-matriz, then we have

|A| =: FAT2RFORM(n,cy,ca,1,d)
= CQ(TL)FATARROW(TL - 17 01\1..71—1) r\1..n—1) d\1..n—1) 6\1..71—2)
—C1 (n)FATARROW(n -1, C2ly s T‘i:cz(lu), d‘i:cg_(ll] , e‘i:cg_(i))

—e(n — 1)FAT2RFORM(n — 1, cl‘l..nfl’C2‘1..n71’r‘Y71=;2(1) , d‘?—1=1c2(n71),e‘1”"72).

.on—

30 CHAPTER 2. FRAME FORMS

Proof.
We expand the last row of A :

Al = ()" er(m)|Am | + (=1)"Te(n = D] Ann-1] + e2(n) | Ana].

Observe that |Ay,| = FATARROW(n —1,¢1), ,_,s7)y o_1> @)y . _15€|1 ._») as above if we transpose the minor.

Moreover, swapping the last column through to the first column and transposing the result, we establish

that |A,1| = (=1)""2FATARROW(n — 1,02‘1__71_1,r‘1=c2(1),d‘1=c2(1),e‘1=c2(2>). The rest is straightforward to
1.n—1 1.n—1 1.n—2

see.

The last determinant formula can be viewed as a recurrence. Unfortunately we cannot solve this recurrence
in general, so we still lack an explicit formula for this case.

It remains to note that it is possible to reduce fat R—matrices of other orientations to one of the previous
cases using similar methods as in Corollary 5.

2.5 Determinants of DB—matrices

It is obvious that we now want to make the final step, that is allowing all bordering elements and the main
diagonal elements to be nonzero. The resulting matrix class looks like a box crossed with one diagonal line
which is exactely the logo of the “Deutsche Bank” (hence the name DB-matrix).

Definition 11 A matriz A of order n is called DB-matrix if only the first and last rows and columns as
well as the main diagonal are nonzero.

er:{l,...,n} = R, c1(i) = a;1 is called generating function of column 1.
co:{1,...,n} = R, c2(i) = a;, is called generating function of column n.
ri:{1,...,n} = R, r1(i) = ay; is called generating function of row 1.

ro : {1,...,n} = R, r2(i) = an; is called generating function of row n.

d:{1,... ,n} = R, d(i) = ay; is called generating function of the main diagonal.

The matriz corner elements ai1, a1, n1, Ay will be denoted by c1(1),ca(1),c1(n), ca(n) respectively, as they
are overlapping again.

The determinant of a DB-matriz will be referred to as DB—determinant or DB—form and will be often denoted
as DBFORM(n, ¢1,¢a, 71,72, d).

Example

Recall the examples from the first chapter concerned with the detection of spherical degeneracies|[ES95]. The
mentioned in—sphere predicates Sy and S, are in DB—form.

1 s 0 - 0 s 1t t -t dt?
1 4 0 - 0 ¢ 1t 0 - 0 ¢
S = 10 "8 , So = 1o & 8 (2.12)
o o0 Co .0
1 0 - 0 tg 3 1 0 - 0 tg ¢
1t - t t dt? g2 1 s -+ s s ds g2

Now we want to derive a general determinant formula for DB-matrices.

2.5. DETERMINANTS OF DB-MATRICES 31

Theorem 9 Let A be a DB-matrix of order n with generating functions ci,cs,r1,r2,d, then the following
identity holds:

‘A| = CQ(?’L)ARROW(’R— 1,7“1‘1 n—11Cl1 e 17d\1 n— 1)

— cl(n)ARROW(n — 1 r ‘1 c2(1 yC2|y e l,d‘l c2(1))
) - (2.13)
n—

— Z ()RFORM(TL -1 Cl‘z—m 1, 02‘1—)n 1, 7‘1‘1 d‘;—1)
1=2

where f|, as before and

N f@) 1<i<k
f’:n(l)—{ Fi+1) k<i<m
and
f@) 1<i<k
fkm—)m()z{ fG+1) k<i<m
f(k) i=m
Proof.

We will prove the identity by expansion of the last row:

Al = (=1)" ey (\Am\+2)"y (1) Apa| + e2(n)| Apnl-

We observe analogously to the previous theorem that |4,;| = (—1)""2ARROW(n—1, Py ji=ea s oy s d‘1=C2(1))
1.n—1 1.n—1
and [Apn| = ARROW(n — 1,7y, . ,c1py s dpy i)

Let 2<1<n-—1, then

all)y m@) - mi-1) mil+1) - r(n-1) ca(1)
c1(2) di2) o0 e 0 e 0 c2(2)
0
Aol |al=1 T d(l—=1) 0 0 el —1)
[Am| = a(l) 0o - 0 0 0 N0
a(l+1) 0 0 dl+1) ea(l+1)
: : : " " 0 :
c(n—1 o - 0 0 din—1) e(n—-1)

Swapping row [down to the bottom, we get

32 CHAPTER 2. FRAME FORMS

c1(1) r1(2) ri(l—1) r(+1) ri(n—1) ca(1)
c1(2) d(2) 0 : 0 c2(2)
0 :
= (1| 0D d(l - 1) ea(l — 1)
" el +1) ‘ d(l +1) el +1)
. 0

ci(n—1) : .o dn—1) ca(n—1)

e () 0 ... 0 e (1)

which is exactly the R—determinant stated in the theorem. The signfactor reduces to -1, thus we have proved
our claim.

Note that the proof is not limited to expansion of the last row. Similar results are obtained if we expand
the first row or one of the bordering columns with the effect that we have to deal with oriented arrow and
R—forms.

For the sake of completeness we state a corresponding result for DB—matrices with a nonzero counter main

diagonal instead of nonzero main diagonal.

Corollary 8 The determinant of a matriz A of order n with generating functions c1, ca, 71,72 like in normal
DB-matrices and modified diagonal generating function d(i) = an_;t1,i s

|A| = (1) |5 “'DBFORM(n, ¢1, ¢a, 7, rl dT,

where rR(i) = ry(n —i+ 1), 78(0) = ro(n — i+ 1) and d®() = d(n —i + 1).

Proof.
Just swap column j and column n —j +1for j=2,...,[2| - 1.
Observation

We can express the determinant of a DB—matrix by 2n — 2 determinants of arrow—matrices of smaller order.
However, in general, we do not have an explicit determinant formula for symbolic n. It is possible to receive
an explicit formula for special cases:

If one of the bordering rows or columns contains only a fixed number (i.e. independent of n) of nonzero
entries then a fixed number of determinants of arrow—matrices is sufficient to express the DB—determinant,
hence we may obtain an explicit formula for the DB—form. We also observe that we may yield the previous
case if two rows or columns are “almost” linear dependent (that is apart form a fixed number of entries) by
subtracting an appropriate multiple.

Of course we want to apply our formula to the in—sphere determinants of the previous example and compare
them to the results stated in [ES95].

2.5. DETERMINANTS OF DB-MATRICES 33

Consider S; in (2.12), if we use our package function DBform which implements the general formula of
Theorem 9, we get the formula

(]‘ - Sl/tl) : (dt2 ’ Hld=1 tl —t- Hld=1 tl Zld=1 tl)
d d d
_(3% — tlsl) - (lel tl _tlel tl Zl:l %) .

This formula can be simplified removing the nonzero factor (sq/t; — 1) - Hldzl t; and we receive

1 11
t1+---+td—dt+t151<—+---+———> (2.14)
t tq i

as in [ES95].

Now we turn to Ss in (2.12). Using our package function we get the formula

d d d
(1 — t/s)-(ds2-Htl—s-Htthl>
=1

=1 1=1
d d 44
2
(dt* — dst) - (Htl -s-][ZE) :
=1 =1 =1
It is possible to factor out the nonzero term (]_[ld:1 t1)/((t — s)), receiving
1 1 1
ti4 -t tg—dt+dst| —+-+—— = (2.15)
t1 tg t

as in [ES95]. Both determinants are nonzero for the given ranges of the entries (see [ES95]).

Let us play around with the diagonal a little bit again. As in the previous sections it is obvious that moving
the diagonal beyond the first upper or lower side diagonal results in a zero determinant.

The case of nonzero first upper or lower side diagonal is quite interesting however, since it yields only two
R—form calls: If we expand the row or column with only two elements, we are left with a minor in R—form
and another minor which can easily be transformed into R—form. This gives us the following corollary.

Corollary 9 Let A be a DB—form of order n with column generating functions cy,ca, row generating func-
tions r1,r2 and modified function d(i) = a;;+1,5 = 1,...,n — 1 generating the first upper side diagonal,
then

|Al = (=1)"(r2(2) RFORM(n — 1aCl\l..nq:02\1..n71=7"1\i=d)

—r1(2)RFORM(n — 1, Cpj1=e1(m), Cy 1=cam), T2)2 d‘1=c1(n))).
1.. 1 1.n—1 1.n—1

Having the first lower side diagonal instead of the first upper side diagonal in the corollary yields an analogous
formula.

Note that in general we cannot obtain a formula for DB—forms with two neighbouring nonzero diagonals
since they cannot be reduced to a sum over R—forms.

34 CHAPTER 2. FRAME FORMS

2.6 Transformation into border form

So far, our matrices had only bordering rows and columns nonzero which we will denote as border form. We
will investigate the case that the position of the (at most two) rows and columns is arbitrary which we will
denote as frame form. Of course, we would like that matrices of this more general class can be transformed
into border form which would mean a generalization of our preceding results.

In the following we restrict ourselves to determinants of matrices with only the maindiagonal and two
bordering rows and columns nonzero. W.l.o.g. we assume that there are two nonzero rows and two nonzero
columns which are not at bordering positions.

Having a matrix of order n of this form, we proceed as follows:

1. Swap the first nonzero row at position k; with the first row (and consider the effect on columns and
diagonal). The first diagonal element a1y is now at ag,; and if the first column is not nonzero we have
to get rid of this “dangling” element to preserve the form with only one diagonal, two rows and two
columns nonzero. We swap the first column with the k;th column which gets the “dangling” element
back into the diagonal (effects on the rows and diagonal have to be considered) and restored our desired
form since the element ayg,, is zero except if column k; is nonzero but in this case we would swap the
column into the right place.

2. Swap the second nonzero row at position ks with the last row (effects on columns and diagonal have
to be considered). If the last column is zero with a “dangling” element then we have to swap column
n with column k. Now the rows are at the desired place.

3. Swap the first nonzero column with the first column (considering the effect on rows and diagonal).
Since the rows are already at bordering positions, we don’t have to get rid of an unwanted “dangling”
element.

4. Swap the second nonzero column with the last column (considering the effect on rows and diagonal).
Finally, we reached the border form. The determinant of the transformed matrix multiplied with the
sign factor introduced by the swapping is identical to the original matrix.

Let us illustrate the process in an example:

2.6. TRANSFORMATION INTO BORDER FORM

Example

Consider the determinant

OO O OO U

OO M OO O

ST oo o R oY o

OO O Q OO

O 00 OO 0O 0

OO Q o8 OO UO

O O OO xAUO

QOO DD OO AUO

35

Swapping row 2 with row 1 gets one of the rows into the desired place but introduces a dangling element:

d

OO oM OO R

Successive exchange of the first two columns eliminates the dangling element and yields

OO O OO O

a b d c d d d
0 b 0 ¢ 0 0O
0 a 0 ¢c 0 0 O
0 b a c 0 00
e b e a e e e
0 b 0 ¢c a 00
0 b 0c 0 a O
0 b 0 ¢ 0 0 a
d b d c d d d
a b 0 ¢ 0 0 0
0 a 0 ¢c 0 0O
0 b a c 0 0O
e b e a e e e
0 b0 c a 00
0 b0 ¢c 0 a O
0 b0 ¢c 0 0 a

Next, we swap row 5 with row 8 and then column 5 and 8 to get rid of the resulting dangling element and

get

O OO0 O OO

D OO OO K

QO TSNS o o

o O OO OO

D OO OO0 O«

o O/ OO OO

D OO OO O

L OO 000000

The last transformation already put one of the columns into the

column 3 with column 1 and we finally get

ST TR o o

o OO O OO X

D OO OO O

o OO O OO X

oD OO OO O

D O OO0 O

oD QOO OO O

QL OO O OO 00

right position, thus, it remains to swap

36 CHAPTER 2. FRAME FORMS

which is in the desired frame form.

How does the procedure change if we take one of the principal side diagonals to be nonzero instead?

Essentially, we follow the four steps above, with the difference that the “dangling” element appears only in
the second or penultimate row or column and has to be treated appropriately. In half of the swap cases,
there are no dangling elements (e.g. if the lower side diagonal is nonzero and we want to swap row kjand
the first row then no “cosmetics” are needed afterwards).

However, there are a few special cases to be taken into account: Consider the case that the upper side
diagonal, an arbitrary row and the first and the second column are nonzero. Assume that the row has
already been transformed without changing the position of the columns:

a11 aiz2 @iz ai4 - Q1n
ast as ax 0 .- 0

az1 azx 0 az
ag1 Q42 0 0 0

An—1,n
an1 anp2 0 0 e 0

Since the first column is already in place we have to swap the second column with the last column which in
general introduces a dangling element at the position (n — 1,2). Unfortunately, now, it’s not possible to get
rid of this element by performing another row or column exchange without introducing an additional row or
column with nonzero elements. However, we can escape the dilemma if we simply swap the second column
at position two through to position n performing n — 2 column exchanges. The resulting matrix then has a
nonzero main diagonal :

a1 a13 a14 A1n a12
a1 axz 0 .- 0 a2
n—2| Q31 0 a3y azz
(=1) _
: 0
apn—11 0 -+ 0 ap_1pn aAp_12
an1 0 s 0 0 an2

We proceed analogously in the case of counter diagonals.

Observe that we can easily drop the assumptions having exactely two nonzero rows and columns in non—
bordering positions at the beginning of our procedure.

It is important to note that such transformations are not possible in general if we allow two (or more) nonzero
diagonals:

Example

Consider the following determinant:

110 0 0 0 O
0110000
001 1000
111 11 11
0000110
0 000O0T11
0 00 0O0O0T1

2.7. IMPLEMENTATION 37

Exchanging row one and four yields

|
O OO = OO ==
OO O = O
OO OO =
OO OO -=O =
OO = OO O =
O == O OO ==
——-0 O OO -

Now, we introduced two “dangling” elements. We can get rid of the first one in a41 by simply exchanging
column one and four. The second one causes problems, however. We cannot get rid of this dangling element
without causing another.

Of course, if we would allow that an additional bordering column can be nonzero, we could also deal with
this case, but if we already had two nonzero columns, we are definitely lost.

In many special cases, a transformation would be possible, but, having automation in mind, we are only
interested in a general solution which can only be found in the case of one nonzero diagonal.

It may be noted that our transformations are based on graph isomorphism if we use an appropriate repre-
sentation of the frame form determinants.

2.7 Implementation

We address implementation issues of the Maple package FRAMEFORMS that provides the computation of
determinant formulas for specified matrices of the discussed shapes. Examples and further details can be
found in the appendix or the on—line help pages.

2.7.1 General Considerations

Which matrix generating functions can I use ? In the previous sections we defined the matrix
generating functions in a general way: A generating function f(i),i = 1,...n could take any values for any
fixed i, that is there are arbitrary piecewise definitions possible.

In our implementation we will need to restrict this generality to make the coding bearable.

We now require that piecewise definitions of f are only possible in the intervals [1..pi] and [n — ps..n] with
integer p1,p2. In these intervals we may choose any value for f(i) but in the interval [p; +1..n — py — 1] we
need f(i) = g(i) for a non—piecewise function g.

This restriction is necessary since any slighter generalization amounts in an unacceptable amount of additional
coding.

However, many interesting examples can be handled using this restriction. Another reason is that the
determinant formulas will get more and more complicated and unreadable as the generating functions become
more and more general.

Consequently, we restrict the matrix order n to be of the form n = v + d with a symbolic variable v and
integer d. This is reasonable considering the first restriction.

Matrix order The matrix order n can either be a positive integer or a symbolic value (see above). The
first case results in a determinant which could also be computed by Maple’s det function. For small values
of n this will be significantly faster due to all the testing overhead in our functions. However, for very large
values of n it may be worth to use the package, since it provides direct computation without dealing with
storage consuming intermediate expressions.

38 CHAPTER 2. FRAME FORMS

Specifying the matrix This is the most important issue: How can we specify matrices of this class?

The idea is very intuitive. If we have a special matrix in mind or on paper and should specify it, we would
say for example: “the first column looks like this, the last row looks like this and the main diagonal like this”.

Thus the matrix specification is a list of row, column or diagonal specifications:
specM=[specL_1, ..., specL_k]

In this list we have lists of tuples of the form specL. = [typel[pos] , functionspecL] specifying a certain
matrix chunk.

type may be row,col,diag or cdiag.

pos can be between 1 or n for row and col type or -1,0,1 for diag and cdiag type.
Obviously, col[n] means the last column and diag[-1] means the first lower side diagonal.
functionspecl is the piecewise specification of the elements in the current matrix chunk.

functionspecl= [[interval_1, function_1(i)], ..., [interval_k,function_k(i)]]

Example

The following matrix

a1 az -+ Gp-1 Qp

-1 =z 0 x 0
M = 0 -1 =x

0 0 -1 T

would be specified by
[[row[1],[[1..n,al[i]]1] 1, [diagl0l,[[1..1,a[1]1],[2..n,x]1] 1,[diag[-1],[[1..n-1,-177 1]

Features:

e If an entire row, column or diagonal is generated by a single function f (i) , it is cumbersome to always
write [[1..n,£(i)]]. This can also be achieved with £(i) or [1..n,f(i)] for short.

e Since corner elements overlap it is also cumbersome, that we have to to write this corner element in
every relevant function list. Hence we allow that it may be left out if already specified elsewhere. A
shorter specification for the preceding example would therefore be: [[row[1],al[i] 1 , [diagl0],
[2..n,x] 1 , [diag[-1],-1]1]

e It is also possible to leave holes at the beginning and the end of a function specification list which are
padded with zeroes.

Ie. [[4..7,a],[8..n-3,b]l] is modified into [[1..3,0],[4..7,a],[8..n-3,b],[n-2..n,0]] if the
corner elements were not specified yet, otherwise it is adjusted appropriately.

e Another short cut is diag for diag[0] and cdiag for cdiag[0] respectively.
e If an interval only contains one element we may write [p,f(i)] instead of [p..p,f(i)].

Note that the single specifications of rows, columns and diagonals can be in arbitrary order.

If no specification for overlapping corner elements is found, they will be treated as zero.

2.7. IMPLEMENTATION 39

Checking the determinant How can we trust the computation of a determinant formula using this
package? It would be desirable if we could test the resulting determinant formula with different values for
the matrix order n.

Hence, if we give the optional directive “check[dim]”, the positive integer dim is substituted for symbolic
order n into the matrix specification and the determinant of the resulting matrix of order dim is computed
using Maple’s det function and compared with the output formula where we substituted dim for n as well.
Inconsistencies are reported to the user as a sign that the output formula is not trust worthy.

Setting dim to a very large value, or successively trying different check values, increases the trust in the
result. On the other hand, large values for dim also increase computation times and can fail when Maple
runs out of memory at some stage.

The default check value is 4. It is automatically adjusted to ¢ if the output formula is only valid for n > c.

2.7.2 The package functions

The FRAMEFORMS package consists of the following functions:
Frameform, FrameformMatrix, GetBorderForm, Form7, Arrow, Nform, Rform, DBform.

The function Frameform automatically detects the matrix form and calls the corresponding function. The
function FrameformMatrix simply returns the specified matrix and serves as a tool to play around with (e.g.
one might be interested in the product of such matrices). In the case of symbolic orders we use dots “0” to
abbreviate the symbolic order appropriately and hence the returned matrix should just be used for illustrative
purposes since the “dots” are treated as normal entries by Maple. The function GetBorderForm returns the
specified frame form matrix in border form performing the operations described in the last section.

2.7.2.1 General Properties
The general structure of the package functions could be loosely described as:

1. Parse and test input determining additional informations and transforming the specified matrix into
standard border form if necessary.

2. Transform specified matrix into standard form to apply our derived formula.

3. Compute the determinant formula according to number and position of the diagonals splitting up the
occurring sums (and products) into the necessary parts, simplify and test (if specified).

All package functions first parse and test the input. They all call the function MatrixSpecification
which checks the matrix order n and the matrix specification specL according to the previous section.
If the optional argument print is given it calls the function printMatrix for integer matrix orders or
printMatrixSymbolic in the symbolic case. These functions display the specified matrix using dots to
illustrate the symbolic case.

The optional argument check or check[k] enables the checking mechanism. The check order is determined
(see above) and the internal function printMatrix is called for that order with the option not to print but
just returning the appropriate matrix . Maple’s det function computes the trustworthy check result.

If the specified matrix is not already in border form, the function determineStandardFRAMEFORM is called
which transforms the lists of the generating functions appropriately (according to the previous section tak-
ing all special cases into account) such that they would result in the specification of the corresponding
transformed matrix. A possible sign factor is also returned.

The final stage of MatrixSpecification is to determine the type and corresponding orientation of the
specified matrix.

It eventually returns a list of informations: [Type,n, V, symbolic, checkresult, checkdim, ndiags,
diagpos, orient, L] .

40 CHAPTER 2. FRAME FORMS

e Type is one of the unevaluated names diagonal, arrow, form7, N, R, DB .

e V is the variable in the matrix order (if n is symbolic, 0 otherwise).

e symbolic is a boolean flag describing the matrix order.

e check_dim is the matrix order used for checking the result (0 if checking is disabled).

e check_result is the determinant of order check_dim computed with Maple’s det function.
e n_diags is the number of occurring diagonals.

e diag_pos is the position of the “highest” or “lowest” diagonal (0 for main diagonal, 1 for upper side
diagonal, -1 for lower side diagonal).

e orient is the orientation of the matrix form. This indicates how to transform into standard form.

e L is a sequence of function specification lists depending on Type e.g. for arrow type we return the
function list specifying the row, followed by the function list s specifying the column and the diagonal(s).

The package functions then test whether the determined type is correct and call their computation functions
with the additional informations .

The computation functions first transform their input matrix expressed by the generating function lists to
standard form (to make use of our formulas). We need to manipulate the function lists for that purpose
using package internal list modification functions. Transposing the matrix and swapping row (or column)
pairsk,n—k+1,fork=1,..., L%J are sufficient for these transformations. The internal package function
reversel simulates the effect of pairwise swapping on the function lists. Sign factors arising during the
transformations are stored separately and multiplied to the final result formula to keep intermediate results

more readable.

After having reached the standard form we are able to compute the appropriate determinant formula (ac-
cording to the number of diagonals and their position). The remaining problem is to split up the sums
and products in the formula. This is quite easy for integer determinant orders, whereas the case of symbolic
determinant orders has to be examined more closely: We allowed the defining functions to be piecewise in the
intervals [1..p1], [n-p2+1..n] (pl,p2, integer) and required a total generating function in [pl+1..n-p2],
an interval with length dependent on n. Therefore we compute the maximum pl and p2 of all involved
defining functions and compute Y71, formula + Y72F%, formula + Y-, .., formula. The second
sum is over an interval which is dependent on the symbolic variable n, hence we will make use of Maple’s
sum command which is able to find closed forms for many sums. To avoid name clashes with the input we

always use underscored names for summation or product indices.

If the formula involves computation of a determinant of another form we have to manipulate the function
lists appropriately to get the correct new defining functions. This is done using the internal list modification
functions like chopFirst, choplLast, addFirst, addLast, move_i_to_j.

In the end we apply Maple’s simplify function on the resulting formula with the sign factor. If checking is
enabled we call the function checkResult which compares the correct check result with the formula’s value
for n=check_dim.

2.7.2.2 Special Properties

Following we discuss special implementation issues of the different functions.

Form7 The only difficulty here after the transformation into standard form is to handle the piecewise
function definitions. After splitting up the sum we also have to worry about the products which also need
to be split up.

2.7. IMPLEMENTATION 41

Arrow We distinguish the case of only one diagonal and two diagonals.

An Arrow form with one diagonal is transformed into standard form. Simple formulas are computed for
forms that have the upper or lower main diagonal nonzero. In the main diagonal case we determine the
number of zeroes of the diagonal function for ¢ = 2,... ,n. If this number is > 2 we have a zero determinant
if the maindiagonal vanishes for i = zeropos the determinant reduces to the term —r(i)e(i) H’; =2 d(l).

zeropos

Otherwise we compute D = [];_, d(I) and can safely compute the formula d(1)D — D Y";", %.

The two diagonal case is somewhat tricky: First we transform the matrix into standard form with main
diagonal and upper side diagonal nonzero. The formula (2.8) involves the determinant of a 7—form matrix of
order [in the sum. Due to the possibility of piecewise function definition it is not sufficient to compute the
formula of this 7—form of order n and substituting n appropriately. We divide the sum again into three parts.
The fixed order 7—forms in the first sum are computed constructing the 7—form of order p; and using Maple’s
det for the determinant of this matrix and its minors. In the second sum we can safely use substitution
in the formula of the 7-matrix of order n — po — 1. The third sum poses problems again. We compute the
7—form formula for all necessary values and use substitution for the others.

Our decision to restrict the piecewise function definitions will become obvious here at the latest.

Nform The implementation of N—forms is straightforward. First we test whether the rows or the columns
constituting the N—form are linearly dependent which would result in a zero determinant. In the case of only
one diagonal we transform the input to standard N—form and compute the resulting formula distinguishing
between the position of the diagonal.

In the two diagonal case we transform the input to a N—form with nonzero columns, main diagonal and lower
main diagonal. Choosing this transformation yields standard 7-form matrices expanding the last row which
eliminates additional transformations.

Rform Preceding again is the linear dependency test followed by the transformation to standard R—form.
The case of one diagonal results in different computations with two Arrow form invocations each. The two
diagonal case with nonzero first upper side diagonal yields similar Arrow form function calls (this time with
“fat shaft”). The two diagonal case with nonzero first lower side diagonal is treated specially since we only
determined a recurrence formula in Corollary 7: We simulate the stepwise elimination of the lower diagonal
with appropriate row operations and obtain a standard R—form with complicated column entries that is
solved like above (yielding very complicated formulas in general).

DBform Here we only allow one nonzero diagonal.

After the linear dependency checking for the rows and the columns we transform the matrix into standard
form.

If the nonzero diagonal is not the maindiagonal we can use the simple expansion of a row consisting of only
two nonzero elements which results in only two R—form calls.

Having the main diagonal nonzero we’re left with the difficult formula and our aim will be finding or producing
as many zeroes as possible in one of the rows and columns.

If none of the bordering rows and columns contain or can be transformed to contain but a fixed (integer)
number of nonzero elements then our formula tells us that we are left with a “symbolic” sum of R—form
invocations which cannot be evaluated. Otherwise we transform again such that the row or column with the
fixed number of nonzero entries is located in the first row. Following we can compute the result using our
formula with the advantage of having only a fixed number of R—form calls.

42 CHAPTER 2. FRAME FORMS

2.7.3 Problems

One of the major drawbacks of the package is that the output determinant formulas are not entirely simplified
as one would desire, which leads to quite big formulas for more complicated problems. This is due to the
fact that we did not implement simplification strategies for special cases of the discussed determinant forms
and due to Maple’s inability to recognize some potential simplification patterns in expressions . Although
Maple is designed to allow users to define their own simplification procedures this would go beyond the
scope in our case. So we have to look ourselves if we find any obvious simplifications to the formulas. It is
suggested to reapply Maple’s simplify function or to try the factor function which sometimes (but not
always) produces a more readable formula.

Unfortunately, there seems to be a bug in Maple’s sum function, hence our package functions don’t always
work properly (even after the imposed restrictions) in the case of two diagonals. The reasons are Maple’s
attempts to find closed forms for sums which sometimes result in an internal error configuration or a formula
containing oo (obtained by limit computation) that cannot be checked for integer orders.

These errors occur when the defining matrix functions become more and more complex, especially when
more of them are non—constant functions in 7 which often means that Maple attempts to find a closed form
for sums over non—trivial products.

A simple avoidance of these errors would be using Maple’s command for inert summation, Sum which returns
the unevaluated sum. However, in the simpler cases we are happy about closed forms of the occurring sums,
in fact that’s what is expected from such a package.

We chose to steer a middle course: After the in sum call in Form7 we check whether the result contains oo
and replace it by the inert Sum call in that case. This reduces the number of errors significantly without
giving up the advantage of getting nice closed forms for some of the sums.

2.8 Summary

In this chapter we derived a number of determinant formulas for matrix classes that only had bordering rows
and columns as well as the main diagonal nonzero. We generalized the results for arbitrary position of the
rows and columns. The effect of an additional neighbouring diagonal was examined, obtaining formulas in
most cases apart from the DB—form.

The designed Maple package FRAMEFORMS allows the (somewhat restricted) specification of a frame form
matrix and computes a determinant formula using the results of this chapter. The package can be used
to derive determinant formulas for some special geometric predicates in determinant form like in [ES95].
However, the resulting formulas tend to be in need of further manual simplification. “Nice” formulas are only
obtained in simple cases.

We will often meet determinants of the discussed forms in later chapters, e.g. investigating alternants and
double alternants or symmetric determinants.

Chapter 3

Alternants

In this chapter we are investigating determinants of a very important matrix class, so—called alternants.
They occur in various applications, such as interpolation and geometric primitives.

We will first examine general properties of these alternants, illustrate different methods to compute their
determinant exploiting their relation to elementary and complete symmetric functions. Then we try to
generalize our results to double—alternants.

3.1 Alternants

3.1.1 Definition and basic properties

Let us define the term of an alternant. We will first give an illustrative definition followed by an extended
definition.

Definition 12 Let A be a matriz of order n. If the entries of the first row are generated by functions
fis---, fn in one variable x1, the entries of the second row by the same functions in another variable xo and
so on then |A| is called an alternant.

fiz) fa(z1) - falm)

fi(za) fa(za) -+ ful)
|A| = . .) .

Obviously, we would also have an alternant if the columns would be generated by the functions in a certain

variable since transposing leaves the determinant unaltered and reduces it to the previous case.

Let us try to explain the name alternant: Every alternant of order n is a function of n variables. To exchange
two of these would be the same as to exchange two rows (or columns), and therefore would have the effect

of merely changing the sign of the function. Since functions with this property are known as alternating
functions, the origin of the name alternant is apparent.

Therefore we have the following extended definition:
Definition 13 Any determinant which is an alternating function is called an alternant.

Notation We will often denote an alternant |A| with generating functions fi,...,f, in the variables
Z1,...,T, by its main diagonal elements: |A(fi(x1), fo(z2),..., fn(zn))]

43

44 CHAPTER 3. ALTERNANTS

We present the most popular and very important example:

Example

The Vandermonde matriz V of order n is defined as v;j = #~'. Its determinant

2 n—1
1 = i Ty X
2 n—
1z 5 T
V= : : :
2 n—1
1 zpa a:ngl a:n_%
n_
1 =z, z;, Ty
. . . . i—1 .
is an alternant of order n with column generating functions 2!~ ,j =1,... ,n.

Vandermonde matrices have important applications. Recall the problem of polynomial interpolation:

Given n + 1 pairs of points (zo, fo), (21, f1),. .., (Zn, fn) with distinct z;, we want the unique polynomial
p(x) = Z;.Zzo ajz’~" that interpolates the values f; in the points z;, that is, p(z;) = f;. Writing this as a
linear system in matrix form we get:

2 n
1 =z x5 xg ag fo
1 = :U% e x} ai f1
2
1 zp1 Ty, g Cﬂzfl An—1 fn-1
2 n
1 z, x;, xn an fn

Since the z; are distinct, the Vandermonde matrix of order n+ 1 is nonzero which we will see in the following
and the linear system has a unique solution.

After having studied possible applications of Vandermonde determinants, we are interested in the formula
of this determinant. Almost every maths course on linear algebra requires from its students to prove that
V| = [1i<;(zj — z;) (usually by induction). We will derive this formula in the following using a different
proof method but first we will state a fundamental property of alternants:

Theorem 10 FEvery alternant of order n with entries in the ring of polynomials R[zy, ... ,x,] contains the
difference product

DP(zy,... ,x,) = H (xj — ;)

1<i<j<n
of its variables x1,... ,x, as a factor.
Proof.
Let the variables be x1,... ,z,.

Substituting x, for any other of the variables we cause the determinant to vanish since we would obtain
two similar rows. Hence it follows that H?;ll (z, — ;) is a factor. Similarly substituting z,_; for the other

variables yields a factor H?;f(:cn,l — x;) and so on.

3.1. ALTERNANTS 45

This is a very important theorem which allows us to make some simplifications to find the cofactor of the
difference product as we will see in the following sections.

It remains to prove the Vandermonde determinant identity. In fact, we will prove that the difference product
can be expressed as an alternant, namely the Vandermonde determinant.

Theorem 11 The difference product DP(xq,... ,x,) is expressible as an alternant, namely the Vander-
monde alternant |V |:

-1
1z - af
1 T9 ;rg‘il
DP(zy,... ,x,) = . .
1 =z, zn—t

Proof.

Assume the following lexicographic ordering of the variables: 1 < 29 < ... < z,.

n—1,n-2

Thus the leading term of DP(z1,... ,zn) = [[c;cjcn (@i — 7)) I8 2} 23 7 - - 7o,

What is the leading term of the Vandermonde alternant? It follows from its structure and the basic definition

of determinants that the leading term is the product of the main diagonal elements 27 '2" "2 ... z,.
Since |V contains DP(z1,... ,2,) as a factor and their leading factors coincide (including the coefficients),

it follows that indeed DP(zy,... ,2,) = |V].

The preceding results allow some straightforward conclusions on certain Vandermonde like alternants. We
will denote an alternant of order n with column generating functions fi,... , f, and variables x4, ... , x, with
its main diagonal elements | f1 (21), f2(22),... , fn(2n)|nor briefly |(f;(2;))|» and define DP(p(z1), ... ,p(zs)) =
HlSKan(p(:cj) — p(z;)) for polynomials p(z;).

Corollary 10 Let q(x;) be a polynomial independent from j and 1(j) = kj + d with k,d € IN. then
lq(2:) (p(2))' D] = [a(@:) (p(2:)) " DP(p(21),. .. p(zn)*).
i=1

Proof.

Since g(x;) is only a multiplicative factor of the alternant entries independent of j, we can remove this factor
from every row. Now we we look at p(x;)!(9) = p(z;)*U-D+d+k = p(2,)+k(p(2;)¥)7 =1 . The first factor may
be taken out again and substituting u; = p(z;)* we are left with the normal Vandermonde alternant.

If the generating functions of an alternant are of the form p;(z;) = Zfzo(alazé + blmgﬂ), it is also possible
to derive a formula for this type.

Corollary 11 Let |A| = |pj(z;)|» be an alternant with generating functions p;(z;) = Zldi_dl (ajzt -I-bleH),
di,dy € IN and a;,b; coefficients independent from i, j, then

n n da

|A| = Z(—l)”lpl(l’i) H Z bzt (zp — 1) DP(T1, ..o Tty Tig1, o T

i=1 k=1 lzfdl
k#i

46 CHAPTER 3. ALTERNANTS

Proof.

We consecutively subtract column k& from column k& 4+ 1 for k = n — 1,... ,1. The constant powers cancel
out after this modification and we have

p1(z1) gt @ =) e NP et @ = 1) e 2T b (2 - 1)
14| = prz) Yy biah (@ — 1) YR bab T (aa —1) e 2 YR bkt (1)
pi(zn) NP _g bl (@ = 1) 2, X0 b (e, — 1) o 2R 2R bl (2, — 1)

Expanding the first column, we examine the resulting minors |A;;| and see that we can factor out

do
Z blsﬂl]jl (xk -].)

I=—d;
in each row and are left with a Vandermonde determinant of order n—1 in the variables z1, ... ,z; 1, %41, ...
which completes the proof.
Note that the proof would not work if the generating functions p;(z;) involved two terms z7** and 227+
simultaneously.
Example
Let us illustrate the somewhat complicated formula: Consider the alternant |A| = |p;(x;)|, with p;(z;) =

14202 + 271 42,
The corollary yields the formula

n

> (1)1 2+ i + 223)

i=1

=

(95% —1)DP(z1,..., i1, %it1,--. ,Tn)).

E
W
g

It would be possible to obtain formulas for other special alternant classes of simple structure using these
methods but now we will focus on the cofactor of the difference product. The last corollaries did not enlighten
us about the general structure of the cofactor.

We will show that this cofactor is a symmetric function in the variables.

Theorem 12 Let |A(z1,...,x,)| be an alternant of order n. Then

|A(x1,...,20)| = S(x1,... ,2q)DP(x1,... ,24)
with S(x1,... ,x,) being a symmetric function in the variables x1, ... , Ty.

Proof.
‘A(ml"” ’mn)‘

Examine PPt e If we exchange any two variables, both the nominator and the denominator change
sign (being alternants this has the effect of exchanging two columns), hence the quotient remains unaltered,
which is the definition of a symmetric function in these variables.

y T,

3.1. ALTERNANTS 47

We will study this symmetric cofactor in the following sections. At first we will discuss important properties
of symmetric functions that aid our investigations.

3.1.2 Symmetric Functions
We will study the basic important properties of symmetric polynomials. Our presentation follows [CLO96]
and [Kal].

Let R be a commutative ring with identity and 1, ... ,z, indeterminates over R.

Definition 14 A polynomial f € R[z1,... ,x,] is said to be symmetric if it remains unchanged under all
permutations of its variables, i.e.

f@rq), - Ta(n)) = flTr,... 2n)
for all possible permutations = of {1,...n}.

For example, if the variables are z,y, and z, then 22 + y2 + 22 and also zyz are symmetric polynomials.

It is easy to see that the set of all such symmetric polynomials is itself a ring, hence we have a subring of
R[zy,... ,z,]. By definition, every element of R[zy,... ,z,] can be expressed as a polynomial in x1, ... ,2,,
hence x1,. .. ,z, generates the ring R[zy,... ,zy].

Can we find finitely many symmetric polynomials that generate the ring of symmetric polynomials?

Surprisingly perhaps, the answer to this question has been known since at least the late eighteenth century
and in a certain form to Newton.

Definition 15 (Elementary symmetric functions) Given variables x1,... ,z,, we define the elemen-
tary symmetric functions o9, 01,... ,0, € Rlz1,... ,2,] as
g9 = 1
01 =21+ + Tn,
09 = E xilxiz,
1<i1 <ia<n

Or = E wi1"'wir:

1<i1<-<in<n

Op =T1T2 " "Tnp.

Thus o, is the sum of all monomials that are products of r distinct variables. In particular, every term of
o, has total degree r.

We would like to convince ourselves that these polynomials are indeed symmetric. We introduce a new
variable X and consider the polynomial

FX) = (X = 2)(X —22) -~ (X —2) (3.1)

48 CHAPTER 3. ALTERNANTS

with roots z1,... ,z,. If we expand the right—hand side, it is straightforward to show that

FX)=X" = X" 4 ou X" 2 o (1) Loy X + (1),

Now suppose that we rearrange z1,... ,z,. This changes the order of the factors on the right—hand side of
(3.1), but f itself remains unaltered. Thus, the coefficients (—1)"0, of f are symmetric functions.

We can conclude that for any polynomial with leading coefficient 1, the other coefficients are the elementary
symmetric functions of its roots (up to a factor of +1).

From the elementary symmetric functions, we can construct other symmetric functions by taking polynomials
in 01,...,0p, in fact what is more surprising is that all symmetric polynomials can be represented in this
way.

Theorem 13 (Fundamental Theorem of Symmetric Polynomials) FEvery symmetric polynomial in
Rlzy, ... ,zy] can be written uniquely as a polynomial in the elementary symmetric functions oo, 01, ... ,0p.

Proof. [Gauf)]
See [CLOY6] for a proof.

At the end of this brief introduction to symmetric functions, we give a definition of the complete symmetric
functions and state some important identities.

Definition 16 The complete symmetric function of the variables x1,... ,x, of degree m, denoted by

Hy(x1,... ,xy) or briefly Hy,, is the sum of all possible powers and products of x1, ...,z of the mth degree.
It may be recursively defined as

H,(x1,...,2p) =xnHp 1 (21,... ,20) + Hyp(z1, .o, Z0q) (3.2)

with Hyp () =0 and Hog =1 and H_j;, = 0 for all variables and k € IN.

m+n71) .

The number of terms in H,,(z1,...,2z,) is (A

It is straightforward to see that the complete symmetric functions also form a basis of the symmetric
polynomials. Other bases are the power sum symmetric functions or the Schur functions, both of which
we do not use here. It is possible to express any symmetric polynomial in terms of one of these bases and it
is possible to convert from one basis to another (There is a Maple package SF in the share library which
provides this conversion for non-symbolic degree).

Let us state some identities about complete symmetric functions that will be useful in the following;:

Developing the first term on the right in (3.2) we get:

Hp(z1, ... yzn) =2 4+ 2™ Hy(zy, ... Tp1) + 2™ 2Ho(21, ... ,p1) + 4+ Hp(21,. .. ,20-1). (3.3)

Similarly, the development of the second term yields:

Hm(wla s ,iEn) = mnHm—l(CUl: S awn) + mn—le—l(CUl: S :xn—l) + o +£E2Hm_1($1,$2) _‘_m;n.

Clever development and some modifications give us the next identities (see [Met60] p. 332 for details):

3.1. ALTERNANTS 49

Hm(:nl,...,a:n) = :E;n —|—Hl(iEQ,...,CUn)Hm_l(Cﬂl,CUQ) -|-HQ(ZEg,...,Cﬂn)Hm_Q(Cﬂl,CUQ,CUg)

] (3.4)
+ .. +$Z 1Hm—n+1(x11' .- ,Q?n)

and
Hm(azl, . ,:Un_l,a:n) — Hm(azl, . ,mn_1,$n+1) = (Cﬂn — iEn_H)Hm_l(iL“l, e, I, $n+1)- (35)

Equipped with the theoretical framework concerning symmetric functions, we will now show how we can
make use of them investigating the symmetric cofactor of the difference product in an alternant.

3.1.3 Expressing simple Alternants as complete symmetric functions

At first we will consider alternants in which the generating functions are (nonnegative integer) powers of the
variables. Hence, we are interested in alternants of the form

o a2l "

D1 P2 Dn
A(D1 P2 pn) _ r x2 1’2
|A(xyt 25, .. 2b)| = }

D1 P2 P

T zP xbn

This type of alternant is known as simple alternant. (Note that negative integer powers can be reduced to
nonnegative powers by taking out an appropriate factor).

We will now present an early result of Jacobi which expresses a simple alternant in terms of complete
symmetric functions.

Theorem 14 The quotient of any simple alternant by the corresponding difference product is expressible as
a determinant whose elements are complete symmetric functions of the variables:

Hy (z1,...,20) Hy,(z1,...,29) H,, (z1,...,29)
A2, .. b)) Hp _1(z1,...,2p) Hp,_1(z1,...,2n) -+ Hp _1(z1,...,2,) 36)
DP(z1,... ,n) : : : '
Hp1—n+1($1:--- :mn) sz—n+1(331:--- :mn) Hpn—n—l—l(wla-'- :mn)
Proof.
Subtracting the first row of |A(z]*,... ,zE»)| from all the following rows, we get:
1,11)1 mfz l,ﬂl)n
ZP1 _pPU P2 gP2 . aPn _ gPn
Al ey = T o
AR (T R
Since 2}’ — z}’ = Hy, (z;) — Hy,(z1) for i = 2,... ,n we see that 2}’ — 2}’ = (z; — x1)Hp,_1 (z1, ;) using
identity (3.4). Thus, the factors xs — x1, 23 — 1,... ,%, — 1 may be taken out and we receive
xl{l mfz ;rzfn
|A(zP" ... zbn)| Hp,—1(z1,22) Hp,—1(z1,22) -+ Hp,—1(z1,32)

H1<j§n(‘rj — 1) : :
HP1*1(‘rlaxn) Hp2,1($1,$n) Hpnfl(xhxn)

50 CHAPTER 3. ALTERNANTS

Treating the resulting determinant in the same way, the elements of the second row being now the subtra-
hends, we apply identity (3.4) again, take out the factors x3 — x2, 24 — 22,... , 2, — 22 and continue this
process on the resulting determinant.

Finally we get

g e b
A p1 P le—l(mluxQ) sz—l(mth) Hpn—l(CUl;mQ)
Al 2] Hy, o(x1,12,23) Hy, 2(x1,22,23) Hy,, o(x1,22,23)
H1g¢<jgn($j - ;) . . .
Hp1—'n+1(w17"' :mn) Hpg—n+1(33la--- :mn) Hpn—n+l(w17-'- :mn)

Multiplying the determinant on the right—hand side by unity in the form

1 0 0 0
H1($2,... ,l’n) 1 0 0

Hg(wg,...,mn) Hl(aﬁg,... ,mn) 1

from the right and using identity (3.5), we obtain the required result.

How can we benefit from this result?

We will show that we can derive arbitrary order determinant formulas for a certain class of simple alternants.
Let us illustrate the theorem in an example.

Example
Consider the simple alternant |A(fi,..., fn)| of order n generated by the functions f; = mg_l for j =
1,...,n—1and f, = 2. The theorem tells us (writing H,, instead of Hy,(z1,... ,z,) for short) that

1 Hl H2 Hn—2 Hs
o 1 H :
Al)l _ ’ .
DP(Cﬂl,... ,:Un) 0 0 : H1 s—n+1-
Do .1 Hyngo
0 0 0 Hs—n+1

Now we want to generalize this for simple alternants generated by functions of the form f; = a:f'd for
j=1,...,n—Fkandd,k € N, and arbitrary monomial functions f; for j=n—-k+1,... ,n.

We simply factor out H?:l xf""l, apply Theorem 14 and see by expansion of the first n — k columns that the

order n cofactor of the difference product reduces to a determinant of fixed integer order k£ with complete
symmetric function entries.

However, it is not possible to derive an explicit formula for alternants like A(z9,23,23,...,27) using this

method which is very unsatisfactory. We will see later, how formulas for these alternants can be derived
using elementary symmetric functions.

3.1. ALTERNANTS 51

Mitchell [Mit81] shows how it is possible to derive a summation formula that describes the expanded deter-
minant without the use of complete symmetric functions:

We slightly change the setting: We have simple alternants of the form |A(z}",... ,z»)| with p; > -+ >
pn > 0. A trivial adaption of Theorem 14, gives us

Hm—pn—m-l sz—pn—m-l e Hpn_1—pn—n+1
p1 ,.D2 Dn n . . .
|A(w1 y Loy Ty)|=H:Upn
DP(zy,...,x ! .
(21,) Tn) i=1 Hy, —p,—2 Hp,—p,—2 Hy, \—p.—2
Hprpnfl szﬂ)nfl e Hpnfrpnfl n
where the H’s involve z1, ..., zy.

Expanding each element of the right—hand determinant by means of (3.3) and resolving the determinant into
the sum of similar determinants using multilinearity, we get

Hl1—n+2 ng—n+2 e Hln_1—n+2
p1 o .p2 n n P1—Pn—1p2—pn—1 Pn—1—Pn—1 . . .
|A(2y", 25®, ... abm)| o N : :
DP(x Tn) i o Tn
Lo ®n Faie h=0 1=0 In—1=0 Hy . H,a - H,,.
Hh le Hln—l n—1
; ~1

where the H’s now involve only z1,... , 2,y anda =Y pi —n—1—np; — > I;.

A little thought shows that the lower limits of I; may be put to p;y1 — p, for i = 1,... ,n — 2 (see [Mit81]
for details).

Hence, we are left with

— D — — D — Co—pnp—1 1—pn—1
A} ab?,)| :ﬁxm Z Z L Z " Z oA)
DP(zy,...,2,) ! "DP(x1,... ,Zp_1)

i=1 l1=p2—pn l2=p3—pn ln—2=pn—1—Pn In—1=0
and have a recursive summation formula.

Mitchell [Mit81] also discusses the number of monomials in the cofactor of a simple alternant, that is the
number of monomials in the symmetric function:

Lemma 5 The number of terms in

ot o a2
S
xﬁl 1‘%2 ,Tﬁ"
DP(xq,...,2,)
where w.l.o.g. p1 <pz <+ < pp, 18
L e
1 po -+ Py~
L opn o pp! _ hicicj<n®i — i)
00 ob ot | i
10 11 S]_n*1 =1

(n=1)0 (n—1)! - (n—1)1

52 CHAPTER 3. ALTERNANTS

Proof.
Since the number of terms in H,,(z1,...,2,) is (m:fl_l), Theorem 14 tells us that there are
p1+n—1 p2tn—1 . pntn—1
Talo Tl alo
p1n— p2t+n— ... (Pntn—
(n—1) (n—1) (n—1)

(D () e ()

possible terms for the cofactor which can be seen setting the x; to 1. Using the identity (Z) = (X) + (,ﬁl)
on the first n — 1 rows and subtracting consecutive rows we get

p1+n—2 p2t+n—2 . Prnt+n—2

Plrjr;l% 3 Pzrjr;la 3 Pn(lfn273

(n—2) (n—2) e (n—2)
(np—12 (np—22) (np—nQ)
(np—ll) (np—Ql) n—nl

(%) (%) (%)
(”f) (”f) (”f)
(wa) (%) (")

This resembles a Vandermonde type determinant. Let us expand the binomial coefficients:

n nn—-1)---(n—k+1 1 1
<k> — () k'():Enk_i_P(nk),

where P(n*~!) is a polynomial in n with leading power k — 1. Hence we have

1 1 1
D1 D2 Pn
5Pt + P(p1) 303 + P(p2) 505+ P(pn)
Gt PTGty TPy e e+ PR

Factoring out (n — i)! in each row i and observing that the P(:) summand does not contribute to the
determinant, we finally get

]_ pl . p?‘71
1 D2 - pg’_l
1 py - pp! _ [licicj<n(pi —pi)

[T (0) ol

3.1. ALTERNANTS 93

3.1.4 Reducing alternants to simple alternants

In the previous subsection, we restricted ourselves to simple alternants with monomial entries and derived
formulas for special cases of symbolic order. Now we will show how we can express general alternants with
polynomial entries as a combination of simple alternants.

Assume an order n alternant A with generating functions f;(z;) = ao; + a1jz; + agjl'? +---+apz] .

Then we can conclude from the multilinearity of determinants, that

A i
T T T :r21 :r22 :r2n
A @) Sl = 5 Y annanea, .
11=11ls=1 l,=1 l ! l
T, Ty Ty
Example
. . _ _ _ 2 3
Consider |A| with fi(z;) = a + bzy, fo(zi) = 4, fa(z;) = ca] — dazj.
a+bry m cx?—drd
|Al| a+bzs x> cxd—dad
a+bry z3 cx3—dr;
We get
1 = x% T T x% 1 = xf T T x?
|Al=ac| 1 zo 2% |+bc| 32 @ @3 |—ad| 1 xy 23 |—bd| 29 x2 73
1 xz3 CU% T3 I3 CU% 1 xz3 azg T3 I3 :Ug

We observe that the second and the last simple alternant vanish, thus, using Theorem 14, we obtain the
result

|A| = (ac — adHy (21,29, 23))DP (21, . .. ,2p).

Obviously, a reduction to a fixed integer number of simple alternants is only possible if all but a fixed
integer number of generating functions of the alternant are monomials. Unfortunately, we need myms - - my
simple alternants which is exponential in n. However, we have already seen in the example, that many
vanishing simple alternants (since columns coincide) are included in the summation. It is suggested to
do the summation in a reverse order, first considering the bigger powers. If then the biggest power in a
combination pl(ll), e ,pl(f) is less than n — 1, resulting in a zero simple alternant since there have to be two
identical columns, we can abort the summation since the maximum degree of later combinations can only
be smaller.

3.1.5 Computing elementary symmetric function representation of alternants

After we have seen how the cofactor of simple alternants and the difference product can be expressed by a
determinant of the same order involving complete symmetric functions we would like a similar result for the
elementary symmetric functions.

We will even show a result from [Met60], that the cofactor of any alternant with polynomial entries and its
difference product may be expressed as a determinant involving coefficients of the alternant elements and
elementary symmetric functions. However, the order will be the highest degree of the generating polynomials.

54 CHAPTER 3. ALTERNANTS
Theorem 15 Let |A| be an alternant of order n with column generating functions
fi(xi) = aoj + arjw; + agjzi + - +apjay, (r>n)

and let Sy, = (—=1)*oy for k=0,... ,n (where o}, is the abbreviation of oy (z1,... ,x,) and og :=1).

The following identity holds:

Qo1 G11 a1 T Ap1 Gpy1,1 0 Qpl
ap2 12 922 .. An2 an+1’2 . aro
|A(f1($1), 7f'n($n))‘ aon A1n aan Ann Antin **° Qrm
DP(zy,... ,x,) = Sn Snr o St So 0 o0 ‘ (3.7)
0 . .
Sn Snfl e Sl S(] 0
0 0 Sn Snfl . Sl S(] a1

Proof.

We denote the right-hand determinant by A. Starting with A, we try to get to the left-hand side of the
identity.

1 1 1 1
T ce Tn wo ce Wr—n
A-DP(zy,... ,Zp,wo,... ,Wr—pn) =A- . . o
ry Tho W o Wi,
Multiplying yields
fi(z1) Ji(z2) fi(zn) f1(wo) fi(wr—n)
fu(21) fn(z2) fn(zn) fn(wo) frnlwr—n)
= o) ¢(z2) - P(zn) Plwo) 0 Plwron) ;
z16(21) Tap(z2) - Tnd(Tn) wop(wo) o Ween@(Wrn)
wy " (xr) wyTP(xa) - a"e(x) wo MP(wo) oo wpTpd(weon) |,
where for shortness we put
p(z) = Soz™ + S1z" + - Sz + Sp=(x—x1) - (x — xy).
Since ¢(z;) = 0 for all i = 1,... ,n, this determinant is a triangular block determinant and can be retrans-
formed into a determinant product:
file) fi(ee) - filan) ¢ (wo) Pwi) o Plwrn)

fa(z1) fa(m2) -+ fa(zn) . wod(wo) wip(wr) o Wren@(Wr—n)

Fa(@) fulw) o falen) | |) "0@0) Wl @) o Wl mé(wrn)

r—m

3.1. ALTERNANTS 35

It is obvious that the first determinant in this product is the transposed alternant |A(fi(z1),. .., fo(zn))|-
Factoring out ¢(w;), ¢ = 0,...,n we see that the resulting second determinant is the difference product of
wo, ... sWr_n. Hence, we get

=|A(fi(21),... s fa(zn)) d(wo) - - S(wr—n) DP(wo; . .. ,wr—n).

Since we can write DP(z1,... ,Zn,wo,... ,wr—p), the difference product which we multiplied to A at the
start of the proof, in the form DP(z1,...,2,)DP(wo,... ,wr—pn)d(wo) - d(wr—n), we can remove common
factors and are left with

A- DP(xll axn) = ‘A(f1($1)/ ,fn(fn))‘a

as was to be proved.

Note that the order r + 1 of the cofactor determinant depends upon the maximum degree of the generating
functions of the alternant and is not simply of order n like in the case of complete symmetric functions. We
also observe that the alternant vanishes for r < n — 1 and that the cofactor determinant contains only the
coefficients for r =n — 1.

Let us consider the special case of simple alternants again. Let |A| be a simple alternant with generating
functions fy(z;) = 2", ..., fo(2;) = 2. Assume w.lo.g. that py <--- < p, = r. The foregoing theorem

then yields the following structure of the cofactor determinant:

o - 0 1 0 0 O o --- 0
o -~ 0 0 -~ 0 1 0 - 0
: Do .0
4]
- =0 - 0 0 --- 0 --- 0 1 = A,
_DP(CEl,... ,l’n) Sn SO 0
0 Sn S

where the 1 entries resulting from generating function f; are in column p; + 1.

Since the first n rows have only one nonzero element, the entry 1 at position p; + 1, we can reduce A to
a determinant A’ of order r — n + 1 by expanding the first n rows (recall the minor notation of the first
chapter):

n(n—1)

P Prt A Pn—
Al = (-1 T A12,) (P11 et Pt 1)

Obviously, the columns thrown out of A are the p; + 1st, the po + 1st ... and the p, + 1st (i.e. the last
column). How do we get the signfactor? Expanding the first row, we get (—1)P1, the second row (—1)P2~ 1,
the next (—1)P2~2, etc. which establishes our result.

Example

Consider the simple alternant |A| given by column generating functions f;(x;) = ngl forj=1,...,k—1
and fj(z;) =2 for j =k,... ,n.

56 CHAPTER 3. ALTERNANTS

Then we have

1 0 0 0 0
0
: . 1 0 0 0
4 y
- = . i — _1n = L
DP(z1,...,2y,) 0o - 0 0 1 oo (=1)" " Sn—k = Onr
: : : - 0
0 0 0 0 1
Sp o+ Sp—k41 Sk Sn—k—1 -+ So

We observe that we are able to express symbolic order alternants in terms of a formula containing combina-
tions of elementary symmetric functions that we could not express in terms of complete symmetric functions
(as the example shows for k£ € IN).

In fact, we can compute an explicit formula for the cofactor of all simple alternants with generating functions
of maximum degree n + d, d € IN, since for these degrees it is possible to reduce the order of the cofactor
determinant in Theorem 15 to a fixed integer order via expansion of the first n rows.

Computing formulas of easy polynomial alternants We already showed that we can handle simple
alternants with maximum degree n+d, d € IN. In subsection 3.1.4, we established that polynomial alternants
can be reduced to a combination of a fixed number of simple alternants if only a fixed number of generating
functions are polynomials. We will now discuss, how it is possible to obtain formulas containing elementary
symmetric functions for certain polynomial alternants of relatively easy structure:

First we look at alternants with generating functions p;(z;) = 12! +- - -+ cx 2 + cgiagzl ™ (see the example
below) with

k,d € IN, the coefficients ¢; # 0 and the powers [; being constants (i.e. independent of j) with —m < I; <
n + m, m integer. Applying Theorem 15 we see that the cofactor of the difference product is of the form

0 c1 0 Cdiag 0 Co 0 . 0 Ch
0 c1 0 0 Cdiag Co 0 . 0 Ch
0 C1 0 0 0 Cdiag + 2 0 s 0 Cr
0 c1 0 0 0 o Cdiag : c
0 0
0 C1 0 0 0 Co Cdiag Ck
S, Sp_1 e So 0 ... 0
Sn Snfl e SO -

: . . - 0
0 . 0 S . So

Observe that we have a diagonal with vertical lines in the coefficient block. Our aim is to eliminate these
vertical lines corresponding to the constant monomial summands:

1. Subtract a suitable multiple of the first column corresponding to the minimal constant power from the
other columns corresponding to constant powers in order to reduce them to zero.

2. Subtract the remaining diagonal columnwise from the remaining vertical line, such that only the
diagonal remains.

3. Expand the resulting determinant rowwise. Compute the resulting determinant of fixed integer order.

3.1. ALTERNANTS o7

There are some subtleties to be considered: If the first constant power column is located within the diagonal
then we have the sum cg;04 + ¢1 at the intersection element located in row w, say. Thus every subtraction
eliminates the next desired column part except element w of the column. We eliminate these rests adding
appropriate multiples of corresponding rows. Observe that we do not really need to perform step 2. if the
smallest constant power lies within the diagonal, since expansion would eliminate the altered S.

Example
Consider [4| = |(1 4 2z — 32"~ 4+ 2/*")|,. Theorem 15 gives the cofactor
1 0 1 0 2 0 0O -3 0 O
1 0 0 1 2 0 0O -3 0 O
1 0 0 0 3 0 0 -3 0 O
1 0 0 0 2 1 -3 0 O
0 0
1 0 0 0 2 : 1 -3 0 0
1 0 0 0 2 0 0O -2 0 O
1 0 0 0 2 0 0 -3 1 0
1 0 0 0 2 0 0 -3 0 1
Sn Sn—1 Sn—2 Sn-3 Sn—a Sn-s S St So O
0 n Sn-1 Sn-2 Sn-3 Sn-4 Sz S2 S So
Performing step 1. yields
1 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 O
1 0 0 0 0 0 1 0 0 O
1 0 0 0 0 0 0 1 0 O
1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 e 0 0 0 0 1
Sn Sn—l Sn—2 Sn—3 Sn—4 - 2511 Sn—S v 52 Sl + 3Sn SO 0
0 Sp Sn-1 Sn— Sn—3 Sp—a - S Sy S1 So
Step 2. gives
0 0 1 0 0 0 0 0 0 O
0 0 0 1 0 0 0 0 0 O
0 0 0 0 1 0 0 0 0 O
0 0 0 0 0 1 0 0 0 O
0 0 0 0 0 0 1 0 0 O
0 0 0 0 0 0 0 1 0 O
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 - 0 0 0 0 1
— 0238k Sw—t Sn—z2 Sp—z Sn-4—2S, Snp—s -+ So S1+3S, Sy 0
~S00Sk Sn Sumt Su—2 Su—z Su—s - S5 S S So

After the rowwise expansion in step 3. we are left with the cofactor

_yn2g g = S
n]izlo k n—1 = —(SnZSk + Sn—l Zsk)
k=0 Sk Sn k=0 k=0

58 CHAPTER 3. ALTERNANTS

Next, we focus on alternants of the form [A| = ‘(Zf:o azltP)],, with k,p; € IN and constant ¢ # 0.
Theorem 15 gives us the cofactor of the difference product which now has the following form:

co 0 0 ¢ O 0 ¢ 0 0
0 ¢ O 0 e O 0 ¢

- 0
0 0 Co 0 0 C1 0 s 0 Cr
Sn So 0
0 Sn So

The highest power determines the order of the cofactor determinant. We will reduce its coefficient block to
a diagonal by successively eliminating the other diagonals bottom up, i.e. assuming p; < py < --- <pg =r
we perform the column operations col(p1 +1+14) = col(p1 +1+1) — Seol(py +1+1), ... ,col(pg—1+1+i) =
col(pr—1 +1+1i) — Z=2col(pp +1+i) fori=n,n—1,...,2,1.

Ck

After this reduction, we can expand the cofactor determinant row—wise and get a determinant of fixed integer
order. But what about its entries ?

Unfortunately, the entries obey nasty recurrences and we are not able to find a closed form for these recur-
rences in general. Restricting k¥ = 2 (that is allowing only two monomials with exponents containing j),
however, we can specify the entries explicitly and hence find useful formulas for the cofactor determinant:

Assume, we have |A| = \(clel + CﬂfHd)\n ,d>1.
et 0 - 0 ¢ 0 - 0
0 :
0
|0 0 ¢ 0 0 e
4l = Sh Se O 0
: "L . . 0
0 «+ 0 S, -+ o - S

We define S_;, = 0 and S,,+r = 0 for £ > 1. Eliminating the left diagonal, resulting from clel, in the
cofactor determinant has the following effect on the S; band: The elements of the last row from right to left
are now generated by

[4]

for k =0,...,r. The elements of the penultimate row form right to left are generated by > (—g—;)lS’k,dl,l
and so on.

Thus, we obtain a fixed integer order determinant after expanding the first n rows and may compute an
explicit formula for the cofactor.

3.1. ALTERNANTS 99

Example

Consider |A] = |(xf71 + 2xZ+1)|n. The cofactor of the difference product is

1 0 2 0 -+ 0

0
o --- 0 1 0 2
S, Sy 0
0 S, So

Eliminating the left diagonal, we obtain

0 0 2 0 -0
0 0 0 2

: : . 0
0 0 0 0 2

S EYs DBy e s S 0
ZlflJ(—%)lSn—mH ILEOJ(—%)ISn—m e S —18 S S

Expanding yields the cofactor formula

2°(() (=)')+ () (=)' Sn 41)?).

The combination of the two approaches would be too complicated to describe since several special cases
would have to be considered.

3.1.6 Taking care of fractions and transcendental or exponential generating
functions

Recall that we imposed a restriction on the alternant elements (hence on the generating functions), they had
to be polynomials.

What can we do, if this property is not given 7

In the case of fractions, we simply clear the fractions extracting an appropriate factor and attempt to solve
the resulting alternant using one of the given theorems.

Transcendental generating functions (like sin,cos etc.) or exponential functions impose more problems,
however. If the generating functions are purely exponential or purely transcendental, it is suggested to
substitute new variables and try to obtain polynomial elements. E.g. we substitute u; = exp(z;) or u; =
sin(z;).

We will be making use of exponential and trigonometric identities, like
exp(z +y) = exp(z) exp(y),

sin?(z) = 1 — cos®(x) (3.8)

60 CHAPTER 3. ALTERNANTS

sin(z + y) = sin(z) cos(y) % cos(x) sin(y), (3.9)
cos(z £ y) = cos(x) sin(y) F sin(z) cos(y), (3.10)
|3]
cos(nx) = DE(™) cos™ 2 () sin2k (2), .
(1) = S (5,) o)) 3.11)
L& k n k k
. _ n—2k+1 s 2k+1
sin(nz) = kgo (-1) <2k N 1) cos (z) sin (z).

Many mixed or other complicated expressions cannot be transformed into polynomial form, so having automa-
tion in mind, we will just show how a simple trigonometric alternant can be transformed into a polynomial
one, such that its formula can be obtained.

We will need the following lemma.

Lemma 6 The following identity holds:

I

Proof.
Plugging (3.8) in (3.11) we get

cos(nzx) = cos™ (z) — (Z) cos" 2 (z)(1 — cos?(z)) + <Z> cos™ 4 (x)(1 — cos?(z))?
(3.12)

~ (5) ot @)1 - coa + -

Now we want to order the cosine powers. Let us enumerate the terms in

k
C* = (1 - cos?(z))* = Z(—l)k (?) cos? (z).

=0

We observe that each term in (3.12) contributes to cos™(z), namely, evidently the first term, the second term
if we multiply with the second term in C', the third term if we multiply with the third term in C?, and so
on. Since the signs cancel out we get the following cos™(x) cofactor

(0)+(3)+ ())

3.1. ALTERNANTS 61

Now we examine the cofactor of cos”~?(z) and observe that from the second term on in (3.12), each one
contributes to it, namely the second term if we multiply with the first term in C', the third term if we
multiply with the second term in C?, and so on. Hence we get the cofactor

-((5)+2(3) +3(5) + -+ 3 oy)

Similarly, we get

() () ()6

as cofactor of cos”*(z). Repeating the process yields the Lemma.

Example
Consider the alternant |A| = |(cos((j — 1)z;))|n. We attempt to reduce this alternant to polynomial form,

so we have to get rid of the cos((j — 1)z;) in some way and replace it with something like cos—") (x;) which

would allow us fruitful substitution.
Using Lemma 6, we get cos((j —1)z;) = cosU=V (z)(1+ () + () + -+ (2)+ (U1) + P(cos’3 (),

m

where m is the biggest even number < j — 1 and P(cos’ 3 (x;)) is a polynomial in cos(z;) with leading power
Jj—3.
With the conclusions from the binomial identity, >°;_o () =2 and Y.} (=1)*(}) = 0, we obtain

D)

with m being the largest even number < n (see [BS91]). Hence we may transform the given alternant into

1 cos(zy) 2cos?(zy)—1 -+ 2" 2cos™ (zy) + P(cos™3(z;))
" 1 cos(zy) 2cos?(xa)—1 -+ 2" 2cos™ (zy) + P(cos™3(x;))
1 cos(zn) 2cos?(zn)—1 -+ 2" 2cos" !(z,) + P(cos™ 3(x;))

Substituting u; = cos(z;) we are left with a polynomial alternant in w;. Factoring out []i, 272, we

get the difference product of the variables wu;, since the terms of lower order do not contribute to the
determinant formula (the cofactor determinant is a lower triangular determinant). Back substitution yields
the determinant formula for the original alternant:

Al =272 T (cos(x;) — cos(x:). (3.13)

1<i<j<n

Analogous proceeding in the sine case establishes corresponding formulas.

It remains to note, that we cannot use the same trick for | cos(jz;)|, since the terms of lower orders may not
be neglected in this case. This becomes apparent if we examine the cofactor of the difference product:

62 CHAPTER 3. ALTERNANTS

0 1 0 0 0

-1 0 2 0 0

0 -3 0 4 0 0
lcos(jz)ln=| 1 O -8 0 8 ot | DPcos(an), ..., cos(zn)).

' 0

oo o Bow o e

Sn Snfl Sn72 n—3 1 SO

This cofactor determinant has a diagonal band form and we see that it is not possible to get rid of the
nonzero first upper side diagonal for symbolic orders. More complicated cases like | cos((j + d)z;)| result in
a cofactor determinant with even more nonzero upper diagonals, so we are only able to derive an explicit
determinant formula for the cases | cos((j — 1)x;)| and |sin((j — 1)z;)| or | sin(jz;)| that can be transformed
into the first case.

3.2 Double Alternants

A determinant may evidently be an alternant with respect to two sets of variables, the exchange of any
two of the one set being equivalent to an exchange of rows, and of any two of the other to an exchange of
columns.

Definition 17 A determinant is called double alternant if it is alternating with respect to two sets of vari-
ables, {x1,... ,xn} and {y1,... ,yn}-

If the generating function is F(x;,y;)1<i j<n, we will denote a double alternant DA by

FE€U1=?J1§ FE€U1=?J2§ Fgwlayng

FCUQ, 1 FCUQ,Q F:Eg,n

DA(F(a:,1)) = DAy 0), Flas, o). Flawua) =| o !
F(xnayl) F(xnay2) F(xnayn)

A very well known example for double alternants is Cauchy’s double alternant, which is generated by the

function F(z;,y;) = mlTy,’ z; +y; # 0 for 1 <4,j <n. Hence, we have
1 1 1

1t 14 T14+Yn

1 1 Y1 1 1 Y2 o 1 1y

CauchyD A = T2tyr T2ty2 T2+Yn
1 1 1

Tntyr Taty2 TntYn

It is straightforward to see that any double alternant has the two difference products of the two variable
sets as a factor since substituting one variable of the first set for another variable of the first set yields two
identical rows and substituting one variable from the second set for another of the second set in two identical
columns. Hence we have the following theorem:

Theorem 16 Any double alternant DA with entries in the ring of polynomials R[x1, ..., xu][Y1,.-- s Yn)
has the difference product of its variable sets as a factor, i.e., considering the variable sets {x1,...,z,} and
{yla s 7yn}’ we have

3.2. DOUBLE ALTERNANTS 63

DA=S-DP(z1,... ,2,) DP(y1,... ,Yn),
for a function S which is symmetric with respect to both sets of variables.

It is possible to modify Theorem 15 to get a similar result for double alternants which enables us to express
double alternants in terms of combinations of elementary symmetric functions of the two variable sets.

Theorem 17 Consider a double alternant of order n generated by F(z;,y;) = Zogn,/\gr am:ﬂfy;‘ and let
Sk = (=*op(z1,... ,2,) and S, = (=D)*0y(y1,... ,yn). The following identity holds:

‘F(wlayl):--' :F(wn,yn” —
Dp(xla"' ,xn)DP(yla ayn)

ago a0 e ano Gnt+1,0 ' Gro Sy, o - 0
ap1 aii t An1 An41,1 T Qr1 54171 5;1
!
n—1 0
agn A1n te Ann An+1,n T Apn S(,] : ‘- S;L
ag,n+1 A1,n+1 ce n,n+1 An+int+1 00 Gepdl 0 56 41_1
r—n+1
(—1) , ,
aogr Qair T QAnr An+1,r T Ay 0 T 0 S(,]
S, Sp_1 So 0 0 0 0 0
0 Sn Snfl e SO
: . e e . 0 0 c 0 0
0 0 S, Sn 1 So 0 0 0

2(r+1)—n

Note that the band sub matrices of the S; and the S} have dimension (r —n+1) x (r + 1) (respectively other
way round), such that we get a determinant involving only coefficients if r =n — 1, as we expect.

Proof.

The proof is similar to the proof of Theorem 15, the starting point being the multiplication of the right-hand
determinant by the two determinants DP(xy,... ,®n,wo,... ,wr—yn) and DP(y1,... ,Yn, 70, .. , Trn).

Let us denote the right-hand determinant with A again. We try to multiply A from the left with

DP(y1,.-- ,Yn,T0,--- , Tr—pn) and from the right with DP(z1,... ,Zn,wo, ... ,wr—n). To be able to multiply
these determinants we have to achieve the same determinant orders, so we stretch the difference products

by an identity matrix. First, we consider DP(y1,... ,Yn, 70, ... , Tp_pn) - A:

1‘ y.1 P y-l e y.1 0 . 0 a0 o o o o S;l 0

Voyn o g oy 00 0 e s g

1 m - @l nl 0 ... 0 a(.]n Qnn, arn Sy, 5?0
: : : 0

1 Tp—m """ 77,7}_” ﬂ-:—n 0 - 0 agr - Apr Ay T SO’

0 0 0 0 1 Sn So 0 0 0
E O o s s 0 0

0 0 0 0 0 1 n 0

64

r k
Zk:o aokYq

r k
Zk:(] aokyn
>k 5

k=0 A0kT(

T k
Zk:o Ank yl

T ’ k
Zk:o AnkYn,
r k
Zk:o AnkTo

22:0 arkyt V(Y1)

Zzzo-arkyﬁ ¢(yn)
ZZZO arkﬂ-g ¢(7T0)

CHAPTER 3. ALTERNANTS

(Y1)

mot)(mo)

y1 "v(y)

uL ()
70" o)

ZZ:O aok”f—n ZZ:o ank”f—n 2220 arkﬂ'f—n Y(mr—n) Tr—nP(Tr—n) T (Tr—n)
n So e 0 0
0 Sn So 0 0 0
where 9(y) = Spy" +S1y" T+ + S,y + S, =W —y1) (Y —yn).
Observe that ¥(y1) = -+ = ¥(y,) = 0, thus we have a zero block in the upper right corner. To get a similar
simplification as in Theorem 15, we have to swap the (r —n + 1) x (2(r + 1) — n) block containing the S;’s
with the block containing 7, ... , 7, of same block size:
Z;:O agky{“ Z;:o anky{c T Z;:O arkyf 0 0
2 k=0 aokyy 2 k=0 ankyr - 2 k=0 arkyp 0 0
Sn So 0 e 0 0
= (=1)r—nt!) : :
0 Sn So 0 0
o G0k Sheo@mkm o Yioeamal $(mo) w5 "(o)
Z;:O aOkﬂ'ffn Z;:O ankﬂ'ffn Z;:O arkﬂ'ffn w(ﬂ'rfn) ﬂ-::zw(ﬂ'rfn)
Now we will multiply with the “stretched” determinant
1 1 1 1 0 0
Ty Tn wo Wr—n 0 0
xf Ty wgy wi_, 0 0
DP(Z1,... ,&Zn, W0, .- ,Wr—pn) =| ° :
x] " owl™" wy_p 0 0
0 0 0 0 1
: : 0
0 0 0 0 1

from the right and get

3.2. DOUBLE ALTERNANTS 65
F(z1,y1) F(zn,y1) 0 0 0 0
Fla1,yn) F(znya) 0 0 o .. 0
¢($1) ¢(wn) ¢(w0) ¢(wr—n) 0 T 0
= (—1r—H : : : : : :
zi "P(x1) T, "g(zn) wy "¢(wo) r—n®(Wr—n) 0 e 0

% * * * Y(mo) my (o)

* * * * w(wr,n) R A -(Wr,n)

where ¢(z) = Spz™ + S12" 1+ -+ S, 12+ S, = (x—m) - (z — x,). Making use of the block structure,
we obtain

F(z1,y1) F(z1,yn) $(wo) P(wr—n) ¥ (mo) mo (o)
= (-1 . : 5 : : :

F(zn,y1) Fzn,yn) || wg "dwo) - wplpn¢(wr—n) || ¥(mr—n) - 7 30(Tr—p)
Removing common factors with DP(z1, ... ,Zp,wo, ... ,wr—pn) and DP(y1, ... ,Yn, 70, ... , Tr—pn) like in The-

orem 15 indeed yields the desired identity.

Let us see if we can also benefit from this theorem.

Example

Consider the double alternant DA of order n, generated by F(z;,y;) = (z; + ;)" = > p_o (:)xfy;l_k
Theorem 17 gives

S R
(nril) 0 S;lfl
DA _ :
DP(z1,...,2,)DP(y1,... ,yn)
o (i) - PS5
(g) 0 0 S
Sn Sp—1 - S1 So 0

n+2

Examining the right-hand determinant, we observe that it is possible to transform it into arrow form.
Applying the results of the second chapter, we get the formula

2 Tn)0n—1(Y1; - -, Yn) ﬁ <Z>

p

n

)Y ai(an,

=0

~
~o

In fact it is possible to reach frame form for other special cases: Examining F(z;,y;) = Zze:go -1 cla:f’yf’,

we observe for constant d that z{y¥ is introducing a column, zy¢ a row, z¥y¥ a main diagonal and z¥y?~* a

counter main diagonal. If at most two rows, two columns, and one diagonal occur in the cofactor determinant
then we may apply the results from the second chapter to compute the determinant formula. Unfortunately
this is only possible for a maximum degree n — 1 or n (of course the whole determinant vanishes for a

66 CHAPTER 3. ALTERNANTS

maximum degree less than n — 1), since otherwise we have too much rows and columns resulting from the
elementary symmetric functions.

However, Theorem 17 is restrictive, since it holds only for double alternants which can be generated by a
polynomial function F(z;,y;). For example this is not true for Cauchy’s double alternant. We will try to
derive its formula in the following;:

Cauchy’s double alternant is generated by a fraction. Following our rules of thumb, we clear the fractions
by multiplying with [T} ,_,(zx + y). The resulting generating function of the modified determinant is

F(azi, ;) = W which reduces to a polynomial but does not have the form required in the theorem.
i J

We know that the modified double alternant has DP(z1,... ,2,) DP(y1,... ,yn) as a factor. Since both the
double alternant and the difference products have the same order, the cofactor is numerical only. If we put
x; = —y;, all the elements vanish, except those in the main diagonal and we obtain DP(zy,... ,z,). Hence,
the cofactor has to be 1 and the formula of Cauchy’s Double Alternant is

DP(1,... ,2,)DP(W1, ... ,n
CauchyD A(zs,y;) = 2@ Tn)DPWL, - yn)
15 =1 (i + y5)

3.3 Implementation

In the previous sections, we derived several methods to compute determinant formulas for different types
of alternants. We will briefly describe the implementation of a Maple package containing most of these
algorithms. Examples and further details can be found in the appendix or the on—line help pages.

3.3.1 General Considerations

Matrix order Like in the FRAMEFORMS package, the matrix order n can either be a positive integer
or a symbolic value of the form n + d, d integer. The first case results in a determinant which could
also be computed by Maple’s det function. For n > 5 it will be worth to use the package, since either
direct computation is provided or the determinant of the alternant is computed via the determinant of
simpler cofactor matrices such that we do not get the enormous expression swell of intermediate polynomial
computations.

Specifying the matrix Alternants may be specified with a single polynomial function f(z;,) generating
the elements a;;. Alternatively, a piecewise specification (like in the FRAMEFORMS package) is possi-
ble, in order to have different column generating functions: [[1..pl, f1], [pi+1..p2,f2]1 , ... ,
[n-pk..n,fk] 1].

Checking the determinant The check facility for the computed determinant formulas is identical to the
FRAMEFORMS package. It is worth to note, however, that large check values (even values of 6 and 7) can
cause Maple to run out of memory since polynomial entries lead to gigantic intermediate expressions.

3.3.2 The package functions

The ALTERNANT package consists of the following functions:
Alternant, AlternantMatrix, ESFcofactorMatrix, CSFcofactorMatrix, DP, ESF, S_to_esf,
evalesf, CSF, evalcsf, DoubleAlternant, DoubleAlternantMatrix,

DoubleAlternantCofactorMatrix, TrigAlternant.

3.3. IMPLEMENTATION 67

Alternant The function Alternant computes the determinant of the specified alternant for a maximum
degree of n + d of the generating polynomials.

The input is tested for validity and the generating functions are transformed into a special list form, e.g.
cx! — z? is represented as [[c,jl,[-1,31], to simplify occurring computations. Then it is decided if a
formula can be computed and which strategy to use. We distinguish three different strategies: normal, esf
and csf that can be enforced using an optional directive.
e If the directive normal is chosen then we require a total function f(z;,j) defining the alternant. We
parse f to see if we can apply Corollary 10 or try to use Corollary 11 instead.

¢ An alternant formula using complete symmetric functions can only be computed if the first n—p columns
are generated by a monomial :cf+d. In that case we pull out factors and determine the resulting cofactor
determinant which is upper triangular for the first n — p columns. Thus, we simulate expansion until
we reach the p x p minor that is computed using Maple’s det function. If the generating functions
for the last p columns are polynomials we split the computation into different monomial alternants
and proceed as before. The returned formula is the cofactor determinant formula multiplied with the
difference product of the variables.

¢ A formula involving elementary symmetric functions can be computed if the columns pos; to n — pos
are generated by a monomial 277 or if we have a single generating function of the form ¢zl 7P +

(2 2
Cme“’z or clmgﬂ)l + Zf:g cz?'. In the first case we split the computation into the computation of
monomial alternants. We determine their cofactor determinant (first rearranging columns in order to
have increasing powers) and expand it (recall that monomial alternants have only one nonzero element
in each of the first n rows). For each of the first n rows we delete the row and column containing the
nonzero element (the determinant vanishes if no nonzero element exists or another nonzero element
occurs in the same column). Since we only allowed one generating monomial between the columns pos;
to m — possy it is possible to simulate the deletion of an “infinite” number of rows and columns. Hence
we are left with a fixed integer order determinant containing elementary symmetric functions that is
computed using Maple’s det function. In the other cases we proceed as described in subsection 3.1.5,
first eliminating all but one constant columns (or the second diagonal) and afterwards expanding the

determinant taking the modifications into account.

AlternantMatrix This function returns the matrix of the specified alternant. It is useful for illustrative
purposes and as a tool to play with. In alternant matrices of symbolic order we use dots “0” to simulate the
symbolic order which implies that it should be used for illustration only since Maple treats them as usual
matrix entries.

ESFcofactorMatrix This function returns the matrix of the cofactor involving elementary symmetric
functions of the difference product of the specified alternant (see Theorem 15). The elementary symmetric
functions of order k are denoted as S(k,n,x) to preserve readability. As above, dots are used to illustrate
symbolic orders, hence the same comments apply.

CSFcofactorMatrix This function returns the matrix of the cofactor involving complete symmetric func-
tions of the difference product of the specified alternant (see Theorem 14). As above, dots are used to
illustrate symbolic orders, hence the same comments apply.

DP The function DP(n,x,f) computes the difference product of the input function f(z;). For f = z; we
get the difference product of the variables.

ESF The function ESF(k,n,x) computes the kth elementary symmetric function of the variables z1,... ,z,
(for 0 < k < n integer) according to Definition 15.

68 CHAPTER 3. ALTERNANTS

S to esf The function S_to_esf (expr) substitutes each unevaluated occurrence of S(k,n,x)

by (—1)*.esf (k,n,x). We used the unevaluated S(k,n,x) calls as abbreviation to preserve readability. The
resulting expression can be fully evaluated for integer n using the function evalesf.

evalesf The functions evalesf (expr) evaluates an expression containing unevaluated esf calls that were
used to preserve readability of the determinant formulas.

CSF The function CSF(k,n,x) computes the kth complete symmetric function of the variables zy,... ,z,
(for k,n integer) using the recurrence (3.2).

evalcsf The functions evalcsf (expr) evaluates an expression containing unevaluated csf calls that were
used to preserve readability of the determinant formulas.

DoubleAlternant The function DoubleAlternant computes the determinant formula of a special form
of double alternants. For integer orders we only require the input generating function to be a polynomial in
z; and y;. We determine the matrix of the cofactor and compute the determinant of this generally sparse
matrix with simpler entries (integers, integer variables and elementary symmetric polynomials) than the
original double alternant. For symbolic double alternants, we have the following restrictions:

d
F(zi,y5) = (az; + by;) 9 or F(zi,y;) = Y1250 Y2, aaf'y]

If the input generating functions meets these restrictions, we try to detect frame form, observing that xfy;“

yields a diagonal, z¥y?~* yields a counter diagonal, z¥y?, (d integer) yields a row, z¢y¥ yields a column

and obtain a formula using the FRAMEFORMS package in that case. No formula can be obtained for a
maximum degree bigger than n or other generating formulas not meeting these restrictions.

DoubleAlternantMatrix This function returns the matrix of the specified double alternant. As above,
dots are used to illustrate symbolic orders, hence the same comments apply.

DoubelAlternantCofactorMatrix This function returns the matrix of the cofactor of the difference
products of the specified double alternant according to Theorem 17. As above, dots are used to illustrate
symbolic orders, hence the same comments apply.

TrigAlternant The function TrigAlternant computes the determinant for a very restricted class of
trigonometric alternants. The generating functions have to be of the form

sin((j — k)z; +d) k>0,

or

cos((j — k)z; +d) k> 1.

The computation follows the method of the example in subsection 3.1.6.

3.4. SUMMARY 69

3.3.3 Problems and Restrictions

Obviously, there are several special cases of alternants that are not included in the package. However, it is
very cumbersome to include more and more special cases in the package and at a certain point, the end just
does not certify the means. Hence, we restricted ourselves to implement all the general methods.

Like in the FRAMEFORMS package, we have the problems that the simplified output formulas are sometimes
far from simplified in our view.

3.4 Summary

This chapter dealt with the important class of alternants. We showed that a polynomial alternant has the
difference product of its variables as a factor, the cofactor being a symmetric function. We presented two
early results from [Met60] expressing the symmetric cofactor as a determinant with elementary symmetric
polynomials and complete symmetric polynomials respectively. For simple alternants of degree n + k it
was possible to compute an explicit formula for the cofactor since the cofactor determinants had a simple
structure. The multilinearity of the determinant allowed to generalize the results for matrices with finitely
many polynomial entries. However, apart from a few special cases we could not derive explicit formulas for
alternants with polynomial entries of arbitrary degree.

The problem of non—polynomial entries was briefly discussed. We described how it is possible to transform
a certain class of trigonometric alternants into easily structured polynomial alternants. Explicit formulas
were obtained in a few special cases only.

In the last section, we investigated double alternants, i.e. functions that alternate between two sets of
variables. A similar result from [Met60] was proven that expressed the symmetric cofactor as a determinant
containing coefficients and the elementary symmetric polynomials of the two variable sets. It was possible
to derive a formula for some special cases for which the cofactor determinant could be transformed into
frameform and techniques of the first chapter could be applied. The presented theorem was more restrictive
than the one concerning alternants, e.g. it was not possible to compute the formula of Cauchy’s double
alternant using the theorem.

The implemented Maple package is able to handle almost all covered special cases of alternants and double
alternants. Using the elementary or complete symmetric function representation, the computed determinant
formulas are even quite “readable” (see the appendix for examples). For integer alternant orders larger than
6 it may even be necessary to use the package functions to obtain results, since the normal det function
may collapse due to the size of intermediate expressions.

70

CHAPTER 3. ALTERNANTS

Chapter 4

Determinants of Hessenberg and
tridiagonal matrices

In this chapter we will investigate determinants of matrices which only have certain diagonals nonzero.
Important matrix classes of this type are the tridiagonal matrices and the Hessenberg matrices.

4.1 Continuants or Determinants of tridiagonal matrices

Tridiagonal matrices occur in many application areas, like spline interpolation, symmetric eigenvalue prob-
lems and differential equations. We will derive a general determinant formula for tridiagonal matrices and
examine its structure to relate this problem to interesting other problems. Our presentation follows [Met60]
and [GKP92].

Definition 18 A continuant is the determinant of a tridiagonal matriz, i.e. a matriz which is zero except
the main diagonal and the two adjacent side diagonals.

The continuant generated by the functions md: {1,... ,n} = R, md(i) = a; for the main diagonal,

ud: {1l,...,n—1} = R, ud(i) = b; for the first upper side diagonal and Id: {1,... ,n—1} = R, ld(i) = ¢;
for the first lower side diagonal will be denoted as follows:

ax b1 0 s 0
C1 as bg :
Kai7bi,ci(1a--- :n) =10 ca as 0
. bnfl
o --- 0 cp1 ap
Ko piei(1,...,n) is abbreviated by K(1,...,n) when the diagonal generating functions are known.
Let K, b;,c;(P1,- - ,p2) denote a continuant of order ps — p1 + 1 with diagonal generating functions

md: {p1,...,pa} = R, md(i—p1+1) = a; for the main diagonal, ud : {p1,... ,po — 1} = R, ud(i—p1+1) =
b; for the upper side diagonal and ld: {p1,... ,po — 1} = R, ld(i — p1 + 1) = ¢; for the lower side diagonal.

How do we compute a determinant formula for continuants? The sparseness of the tridiagonal matrices

suggests minor expansion and we will see in the following that we can straightforwardly obtain a simple
recurrence for the determinant formula.

71

72 CHAPTER 4. DETERMINANTS OF HESSENBERG AND TRIDIAGONAL MATRICES

Theorem 18 (Law of expansion) Let K4, p, ¢, (1,... ,n) be a continuant defined as above. The following
recursive identities hold:

K(,...,n)=a1K(2,...,n) = b1 K(3,... ,n), (4.1)

and

K({1,...,n)=a,KQ1,...,n—=1) —bp_1c, 1 K(1,... ,n—2), (4.2)
with K[li’biaci(]‘) = ay, Kai,bi,c,-(o) =1.

Proof.
We will prove identity (4.2) by expansion of the last column. We get

a by 0 - 0
C1 a2 :
Kopeer(Loom) = | 00 0 0 p, 0
Cn2 Qn_1 bp_1
o --- 0 Cn—1 Qp
a; b 0 . 0 a b 0 - " "
e) c1 as
= Gn| 0 ey . 0 —bn_1 0o . bp—4 0 0
_ P
0 -+ 0 ecpea apoi 0 --- 0 0 0 Cpn—1

The determinant in the first term of the righthand side is obviously K (1,...,n —1) whereas the determinant
in the second term reduces to K(1,...,n — 2) if we expand the last row, and the identity is established.

Identity (4.1) can be obtained analogously.

Example
Ko, bie;(1,...,4) = ar1asazaq — biciazas — arbacaas — arasbses + bicibses.
Let us take a look at the terms in the determinant formula of a continuant Ky, p; ;(1,... ,n). One term of

the continuant is obviously ajas - - - a,. Other terms can be obtained from ajas - - - a,, by replacing any pair
of consecutive a’s, aray41 by —bpc, for 1 < r < n — 1. This follows from the definition and from the fact
that to get b, and ¢, in the position of a, and a,41, one row or column exchange is necessary. Of course it is
possible to iterate this process on the terms obtained by this method which allows us to successively derive
all the continuant terms.

It is possible to conclude the following observation.

4.1. CONTINUANTS OR DETERMINANTS OF TRIDIAGONAL MATRICES 73

Observation
Kaoipie:s(1,.ooon) = Koy —1,-pe;(1, ... ,n) = Ko 10, (1,. .. ,m). (4.3)

It follows that every term in a continuant of odd order must contain a main diagonal element, whereas
in a continuant of even order, we have the term (—1)%b1(31 bscs -+ -bp_1¢,—1 which contains no element of
the main diagonal and is obtained by consecutively replacing a,a,+1 by —b.c, starting with a;as ---a, and
r=1.

Hence, we have the following corollary.
Corollary 12 Let Koy, ., (1,...,n) be a continuant with zero main diagonal.

1. If n is odd then Ko, c;(1,...,n) =0 .

2. If n is even then Koy, c;(1,...,n) = (=1)2byerbzes - by 10n1.

Now let us examine a special class of continuants to gain more insight into the structure of continuant
polynomials. We assume that the side diagonals are 1 and -1 respectively and will write K (z1,...,z,) for
Ky, 1,-1(1,...,n). Thus we have the recurrence K(z1,...,2n) = o K(21,... ,2n-1) + K(z1,... ,2p_2)
with K(z1) = z; and K() = 1.

It is easy to see that the number of terms in K (x1,... ,z,) is a Fibonacci number:

K(L al):Fn+1.

Euler observed (like we stated above for a more general case) that K (z1,... ,z,) can be obtained by starting
with the product z1x3:--x, and then striking out adjacent pairs zjzr41 in all possible ways. We can
represent Euler’s rule graphically by constructing all “Morse code” sequences of dots and dashes having
length n, where each dot contributes 1 to the length and each dash contributes 2. Here are the Morse code
sequences of length 4: -+ -+ — - — . — . ——

These dot—dash patterns correspond to the terms of K (1, z2, 23, z4); a dot signifies a variable that is included
and a dash a pair of variables that is excluded. For example - — - corresponds to z1z4.

A Morse code sequence of length n that has k dashes, has n — 2k dots and n — k symbols altogether. These
dots and dashes can be arranged in (”;k) ways; therefore if we replace each dot by = and each dash by 1 we
get

since we can strike out at most | 2| adjacent pairs zyzg41 in T2 - - Tp.

We have seen that the total number of terms in a continuant is a Fibonacci number; hence we have the
following identity

74 CHAPTER 4. DETERMINANTS OF HESSENBERG AND TRIDIAGONAL MATRICES

It is also possible to get a special formula for the general continuant. If we replace each dot by a and each
dash by —bc we obtain

—

%
Kope(l,...,n) =Y (=1)* (” ; k) a"2kpkek, (4.4)
=0

x>

We now discuss two applications of continuants following [GKP92]. Continuant polynomials are intimately
connected with Euclid’s algorithm. Suppose, for example, that the computation of gcd(m,n) finishes in four
steps:

ged(m,n) = ged(ng,m1) ng = m, n = n
= ged(ng, ng) ne = mng modn; = mng—qini;
= ged(na, ng) ng = n; modns = N — @ana;
= ged(ng, ng) ng = mny modng = N9 — (q3nz;
= gcd(ng,0)=ng. 0 = ng modng = n3g— qng.

Then we have

ng = ng = K()ng

ng = (@44 = K(q4)n4;

ny = qanz+ng = K(g3,qa)n4;

n o= @net+ny = K(q2,q3,q)n4;
ng = qni+ny = K(q1,92,93,q4)n4.

In general, if Euclid’s algorithm finds the greatest common divisor d in k steps, after computing the sequence
of quotients ¢, ... , gk, then the starting numbers were K(q1,¢2,... ,qr)d and K(qg2,qs, ... ,qr)d. This fact
was noticed early in the eighteenth century by Thomas Fantet de Lagny. He pointed out that consecutive
Fibonacci numbers, which occur as continuants when the ¢’s take their minimum value, are therefore the
smallest inputs that cause Euclid’s algorithm to take a given number of steps.

Continuants are also intimately connected to continued fractions, from which they get their name. We have,
for example,

a1+ 1 — K(a17a27a37a4)
a2-|-ag—i£ K(az,a3,a4)
ag

The same pattern holds for continued fractions of any depth which allows us to formulate the following
theorem.

Theorem 19 The following formula holds:

@ = — 45
' a2+ﬁ K(as,... ay) (4.5)

Proof.

We will prove the theorem by induction on n.

4.1. CONTINUANTS OR DETERMINANTS OF TRIDIAGONAL MATRICES 75

Base case: For n = 1 we trivially have KIE‘Z)I) = ay.

Induction step: For the induction step we need the identity

K(z1,... ;¥n—1,2n+y)=K(x1,. .. ;Zn_1,20) +yK(z1,... ,Tpn-1). (4.6)

The identity holds, since

K(a:l,...,:vn_l,a:n+y) = (ﬂ?n +y)K(a:1,...,:nn_1) +K($1,...,wn_2)
=z, K(z1,...,20-1) + K(x1,...,2n—2) +yK(x1,...,Zpn_1)

according to (4.2).

Assume, the following formula holds for all values of n:

a + 1 _ K(al:"' :anfl)

1 — .

a2+_“+% K(GQ,...,an_l)

an—2% g7
We observe that
n 1 K(ala"':an—l_*'%)
ajq =

a2+m+ L K(ag,...,an_1+i)

an—2+ﬁl_

an—1tg -

using the induction hypothesis and replacing a,,—1 by a,—1 + ai Applying identity (4.6), we get

K(al,...,an_g,an_l—}—i) B K(al,...,an_l)—}—ﬁK(al,...,an_g)

K(az,...,an—9,an-1 + i) K(ag,...,an-1) + iK(ag,... , Ap—2)
:anK(al,...,an_l)—l—K(al,...,an_Q):K(al,...,an)
anK(as,... ,an_ 1)+ K(aa,... ,an_2) K(as,...,an)’

which completes the induction step.

Note that it is also possible to state the preceding theorem for general continuants. The proof is identical.

Theorem 20 The following identity holds:

a bicy _ Kaipiei(1,...,n)
1= boc - '
az — Y — Ko biei (2,2 5m)

T bp—1¢n—1

a -
n—1 an

76 CHAPTER 4. DETERMINANTS OF HESSENBERG AND TRIDIAGONAL MATRICES

Now we want to turn to some special continuants. Consider a continuant where each main diagonal element,
except the first and the last one, is the sum of the side diagonal elements of the same row.

Theorem 21 Let K be a continuant of order n given by

di + dy ds 0 e 0

dy dy+dy dy :

K = 0 ds 0

: : don—3 + dap—2 dan—2
0 e 0 dan—1 dan—1 + dan
The following formula holds:
K = Z dids -+ dy—1datodarys - - - dop. (4.7)
1=0

To prove this identity, we will need the following lemma.

Lemma 7 A continuant of even order n = 2m having the main diagonal elements in the even numbered
rows equal, is expressible as a continuant of order m, the relation being:

O, dy 0 e e e 0
-1 ¢ d :
0 -1 6, ds
Com = TR !
dom—o 0
: .o =1 Om, dom—1
0 i eer 0 1 ¢
6,6 d 0 0
dy dy+6aptds dy '
= 0 0
: : doam—1 dom—1 +Om_10 + dapm—3 dam -3
0 ... 0 Ao dom—2 +0m¢ +dom—1 |

Proof.

We multiply Cs,, with ¢™ in the following determinant form

¢ 0 0 0
1 1 —ds
0 0 ¢ 0
P = 1 1 —dy
0
0 0 ¢ 0
0 o 1 1],

4.1.

(which is obvious if we expand it alternately by row and column) and get

CQm ' ¢m =

91¢+d1 dl —d1d2 0
0 ¢ 0 0
-1 -1 dy+60:p+ds ds
0 0 0 b
: i -1
0 0

—dsdy

-1
0

0
0
0 0
dom—2 + 0@ + dom—1 dom—1
0 ¢

Observe that we may expand the even rows of the righthand side, obtaining

(bm

0iop+dv —dids 0
-1 dy + 020+ d3 —dzdy
0 . .
; -1
0 0

-1

d2m74 + emfl(b + d2m72

CONTINUANTS OR DETERMINANTS OF TRIDIAGONAL MATRICES

0

_d2m73d2m72

dom—2 + 0m@ + dopm—1

Equation (4.3) then implies the lemma.

An immediate consequence of this lemma is the following corollary.

77
2m
m

Corollary 13 A continuant of order n = 2m + 1 having the maindiagonal elements in the odd numbered

rows equal,

o dp O 0
-1 6, d
0 -1 d
CZerl = (b 3
. 0
-1 am d2m
0 Co 0o -1 ¢ It
is expressible as a continuant of order m:
di + 610+ dsy ds 0 0
ds dz + 60 +dy dy
Comy1 = 0 ’ 0
dom-3 dom-—3 + Om-10 + dam—2 d2m—2
0 0 dam—1 dom—1+ 0m¢ + dom

(4.8)

78 CHAPTER 4. DETERMINANTS OF HESSENBERG AND TRIDIAGONAL MATRICES

Now we are finally able to prove Theorem 21.

Proof.
Putting ¢ =1 and 6; =--- =6, =0 in (4.8), we have
1 d 0 - o 0
) dy + dy dy 0 e 0
-1 0 d .
0 R ds ds +ds dy
- 3 : : :
. 0
: dom-3 dom—3 + dom—2 dom—2
-1 0 dn 0 o 0 dom-—1 dom—1 + dom |,
0 0o -1 1

2m+1

Expanding A we see that the only nonzero terms are those having a 1 from the main diagonal and the
remaining terms from the side diagonals, and these are just the terms included in the sum on the righthand
side of (4.7).

Note that the first and the last element of the main diagonal may be arbitrary since we can always write
them as ¢11 = dy + do and ¢, = dom—1 + doy, with appropriate d; and day,.

Let us illustrate formula (4.7) in a little example. Consider the continuant

ap + aq ai 0 s 0
ax ay+ax az
Ap—2 QAp—2 + Qp—1 ap—1
0 0 ap—1 an—1+ an n

with identical side diagonals. Since each main diagonal element, except the first and the last one, is the sum
of the side diagonal elements of the same row, we may apply our formula and obtain the nice identity

CnZZHak.

1=0 k=0
k£l

Note that it is also useful to transform a continuant using the observation (4.3) such that formula (4.7) is
applicable. Consider, for example, the continuant

1+ 22 x 0 0
x 1422 =2 :
Cn = 0 0o |
I x
0 0 T 1+ 22

which may be written as

4.2. DETERMINANTS OF HESSENBERG MATRICES 79

1422 x> 0 0
1 1+ 22 22
Cn= 0 0

: 1 1422 22
0 0 1 1+ 22

using (4.3). Now, it is apparent that we may apply formula (4.7) to get the identity

Cp=142a>+2 4. 422,

In closing, we will briefly discuss how to split the computation of a continuant, which sometimes is quite
useful if the continuant consists of different simple patterns. Splitting is straightforward since a continuant
differs from a block continuant in only two elements.

Corollary 14 Consider a continuant with generating functions a,b,c:

al by 0 0 0 0
C1 : : .
C(1,...,n) = Cm—-1 am bm 0 0
o --- 0 Cm Ama1 bmat
0 - 0 0 Cmi1 - 0
. . . . -
0 0 0 0 Cr1 a,
then
C1,...,n)=C(,... , m)-C(m+1,...,n) —bmcp -C(1,... m=1)-C(m+2,...,n)
Proof.

Clever expansion of the mth row or column yields the result.

4.2 Determinants of Hessenberg matrices

Hessenberg matrices frequently occur in the computation of eigenvalues and eigenvectors of a matrix. A
general matrix can be reduced to Hessenberg form using finitely many similarity transformations. Afterwards
different methods like the QR-method can be used to compute the eigenvalues. See [GvLI6] for details.

Definition 19 A Hessenberg matrix is an upper triangular matrixz where the first lower diagonal can also
contain nonzero elements. For our purposes, we define a Hessenberg matriz HB of order n via its diagonal

80 CHAPTER 4. DETERMINANTS OF HESSENBERG AND TRIDIAGONAL MATRICES

generating functions d_1 (i) = hbiy1,; for the lower diagonal, do(i) = hbs; for the main diagonal and dy (i) =
hb; ivr for the kth upper diagonal (k <=n—1).

do(1) di(1) da(1) dp—2(1) dn-1(1)
d_1(1) do(2) di(2) d2(2) e dn—2(2)
Bn(d_1,do,dy,... dn_y) = 0 d-1(2) do(3) ' '
: ' ' di(n—2) da(n—2)
d_1(n—=2) do(n—1) di(n—-1)
0 0 d_1(n—-1) do(n)

Trivially, if the diagonal generating functions dy (i) = 0 for 2 < k < n — 1, we have a tridiagonal matrix.

We could derive a straightforward recurrence formula for the determinant of tridiagonal matrices and would
like to have a similar result for determinants of Hessenberg matrices. Following, we show how to establish a
quite involved recurrence formula.

Theorem 22 Let H(n) = |HB,(d_1,do,d1,... ,d,_1)| be the determinant of a Hessenberg matriz as defined
above. This determinant can be computed via the following recurrence:

H(n):Z(—l)d(n—z (n—i—-1) Hd (n—3j). (4.9)
with the base cases H(1) = do(1), H(0) = 1,H(—s) =0 for s > 0.
Note that H(n — Z) = |HBn,1(d,1,d0, e ,dn,ifl)‘.

Proof.
We present an inductive argument to prove the recurrence. The base cases are trivial.

Let us expand the last row of H(n):

do(1) di(1) dp_4(1) dn_3(1) dn_1(1)
d_1(1) do(2) di(2) B dn-4(2) dn-2(2)
H(n)=do(n)H(n —1)—d_1(n - 1) 0 d_1(2) do(3)
: ' dl(n —3) dg(n—3)
0 0 d,l(n - 3) do(n - 2) dg(n — 2)
0 0 0 d,l(n—Z) dl(n— 1)

dn—5(1) dp—4(1) dn—1(1)

D1 = dl(n— 1)H(n—2) —d_l(n—Q) 0 d,1(2) d()(?))

4.2. DETERMINANTS OF HESSENBERG MATRICES 81

Denoting the determinant in the second term with D, we iterate this process and finally obtain

H(n)=do(n)Hin—1) —d_1(n—=1){di(n —1)H(n —2 —d_4 [da(n —2)H(n — 3)
—d1(n=3) (... (dn2(2)H(1) = d1(1)(dn—1(1)H(0))) ...)]}

Expanding this expression indeed yields the desired recurrence formula

H(n):Z(—l)d(n—z (n—i—-1) Hd (n—3j).

Note that recurrence (4.9) simplifies to our known continuant recurrence formula if we have dj (i) = 0 for
k> 2.

Clearly, this involved recurrence relation does not offer explicit formulas for the general case. However, we
will discuss some special cases where only a fixed number of the diagonals dj, are nonzero and see how explicit
formulas can be obtained.

Example

Consider the determinant H(n) of the Hessenberg matrix of order n generated by the functions d_, (i) =
¢,do(i) = a and d,,_5 (i) = b. Formula (4.9) simplifies to

H(n) =aH(n —1) 4+ (=1)"2bc" 2 H(2).

Let us expand this formula, we get H(n) = a(aH(n — 2) + (=1)""2bc"~2H(1)) + (=1)""2bcH (2). Since
H(2) =a% H(1) =a and H(n — 2) is a lower triangular determinant, we obtain the formula

H(n) =a™ + (—1)""22bc" 2a’.

Let us try to generalize the result of our example. Consider Hessenberg matrices generated by the functions
d_1(i),do(i) and d,,—.(7),... ,dp—1(i) with constant ¢ > 1 (this means that the other diagonals are zero).

We show the formula for the value ¢ = 3 to better illustrate the method: Expanding the first levels of the
recurrence, we get

n—3
H(n) = do(n) |do(n = 1) S do(n = DH(n = 3) + (=1)"duma(DH(O) [[d-s(n =5 - 2)
n—3 n—1
()" H) [[dor(n = = 1) + (=1)"2duea(VH©) [[dei(n—j — 1)
n—3 n—2 n—1

82 CHAPTER 4. DETERMINANTS OF HESSENBERG AND TRIDIAGONAL MATRICES

Since H(n — 3) = H?:_f a; forn > 7, H(2) = a1a2, H(1) = a1 and H(0) = 1, this simplifies to

n 3
(n) = [[do(k) + (=1)"* 3" dys(k Hdon—l+1Hdo H 1(n—j—@B-k)
k=1 k=1

_l)n*QZdn72(k)ﬁdo(n—l+1)1:[do H 1(n—3j—(2-F))
k=1 =1 =1 j=1
()" () [datn—).

The generalization is straightforward, hence we have the following corollary:

Corollary 15 Let HB,(d_1,do,0,...,0,dp_¢,... ,dn_1) with constant ¢ > 1 be an order n Hessenberg
matriz with H(n) denoting its determinant. The following formula holds for n > 2¢+ 1:

n C S
n)=[[do(k) +> (1) |> <d Hdgn—l+1 Hdo H (n—j—(s—k)
k=1 s=1 k=1 j=1
(4.10)
If all the generating functions are constants we get the simpler formula
H(n) =d? 4+ 3(-1)"3d2dp_3d"7® + 2(=1)"2dody_od™ > + (=1)" " 'd,_1d™],
for ¢ = 3, which for an arbitrary constant ¢ > 1 generalizes to
c
n) =dg + > k(=1)""Fdy By (4.11)

In the previous section, we discussed the effect of a zero main diagonal on the determinant of a tridiagonal
matrix. Can we make any statements about Hessenberg determinants with zero main diagonal?

We answer the question in the case of Hessenberg determinants of the form

H(n) = |HBn(d_1,0,0,...,0,dy,0,....,0,dn_c,,... . dp_1)|

with integers p, c.
In the case ¢ = 0, we observe that the determinant has to vanish if n # (p 4+ 1) - s for some multiple s.
Otherwise, we can simply expand H(n) = (=1)?d,(n —p) [}_, d—1(n —1) HB(n —p — 1) and get

()P dpn —p=Up+ D)) [Ty daa(n = Up+ 1) — k), ifn=(p+1)-s
H(n) = (4.12)
0, otherwise.

The case ¢ > 0 is more tricky, however. We assume n > 2¢ + 1 again and observe that

HO)=1 H(1)=---=H(p)=0 and H(p+1) = ﬁ
k=1

4.2. DETERMINANTS OF HESSENBERG MATRICES 83

Examining the diagonal generating functions of the upper right corner of the matrix, dy,—c,... ,dp—1, We
notice that only dy—1,dp_1_(py1); -+ sdn_1—a(p+1) With a = LﬁJ contribute to the determinant since the
others result in a recursive call of one of H(1),..., H(p). Hence, the recurrence simplifies to
p
H(n) = (=1)Pd,(n— p[[datn-1)
=1
a n—1—k(p+1)
FS)R, (k1) + 1) d_1(n = 1) H(k(p+1)).
k=0 =1

Now observe that H(k(p + 1)) = [T_, (~1)?dy(I(p + 1) [T, d—1(l(p+ 1) — j) for k=1,... ,a

Obviously, if n # (p+ 1) - s for some multiple s, all the terms resulting from the first term of the right hand
side vanish and we are left with

a

H(n) = S {(=1)" 40 0d, ey (k(p + 1)+ 1)
k=0

{) 1 n1 k() (4.13)

ﬁ[(p+1) H p+1)—J)J

=1

d,1 (n — l)

=1

Expanding the recurrence for n = (p + 1) - s, we notice that the last relevant diagonal d,,_; vanishes in each
level. Multiplying out, we get

s—1 p
H(n) = (-1)" [[do(n —p—1p+ 1)) [[d-1(n = L(p+ 1) — k)
1=0 =1
a J p
+ II (()Pd,(n—p—1(p+1)) H n—Ip+1) - k))
j=0 Li=1 k=1
a —— (419
()", gy (R(p+ 1) + 1) dy(n—1)
k=j =1
k P
H((—) (p+1) [[drtp+1) -))H
=1 m=1
If we have constant diagonal generating functions, this simplifies to
(—1)*Pdsd’® + 35 _o(k+ 1)(—=1)" ' kd,__ypinydid"F, ifn=s(p+1)
H(n) = (4.15)
Shco(b+1)(=1)" 1k, ypnydhd? T, otherwise.
which completes our investigation of the special case H(n) = |HB,(d-1,do,0,...,0,dp_¢,... ,dn_1)| of

Hessenberg determinants.

Let us illustrate the last formula in an example.

84 CHAPTER 4. DETERMINANTS OF HESSENBERG AND TRIDIAGONAL MATRICES

Example

Consider the Hessenberg determinant of order n generated by the functions d_y = z,d; = b,d,,—5 = v,d,,_3 =
w, dp o= z, dp_1 = y:

0 o 0 0 v 0 w =z y
z 0 b 0 0 v 0 w =z
0 =z 0 b 0 v 0 w
z 0 v 0
H(n) = 0 v
0
0 b 0
z 0 b 0
z 0 b
0 T 0 =z 0

Applying identity (4.15) for n = 2m > 11, we receive the formula

H(n) = (=1)™(b2)" + (=1)"yz""" = (=1)"72bw2""" + (=1)"°3b%0z" 7,

Since n is even, this simplifies to

H(n) = (1) (b2)% —yz" "' 4 2bwz""2 — 3b%02" 3.

4.3 Implementation

We address implementation issues of the Maple package HESSENBERGandCONTINUANT that provides
the computation of determinant formulas for specified matrices of the discussed shapes. Examples and
further details can be found in the appendix or the on-line help pages.

4.3.1 General Considerations

Determinant order The matrix order can be a positive integer or an expression of the form n + d with
integer d and a symbolic variable n.

How do we specify the determinant ? If the determinant order is integer, we can give a piecewise
definition of a diagonal generating function like in the previous packages. In the symbolic case, however,
we impose the restriction on Hessenberg determinants that only total functions in i are allowed, since
the adaption of the formulas for piecewise diagonal function specifications would lead to very complicated
coding. Continuants of symbolic order, however, may also be defined in a piecewise fashion. The diagonals
of a continuant are specified separately whereas the diagonals of a Hessenberg determinant are specified in
a list of two element lists containing the diagonal position (between -1 for the first lower side diagonal, 0
for the main diagonal and up to n — 1 for the n — 1st side diagonal) and corresponding generating function.

4.3. IMPLEMENTATION 85

Each nonzero diagonal has to be specified separately which may seem quite cumbersome regarding dense
Hessenberg matrices. In fact it is not possible to specify a Hessenberg determinant of symbolic order with no
zero diagonals but since we are only able to derive explicit formulas for certain simple forms of Hessenberg
determinants and can only give a recurrence relation for more complicated ones, this restriction makes sense.

Checking the determinant The resulting formula can be checked for specified integer orders (default 4)
which is done like in the previous chapters.

4.3.2 The Package functions

The HESSENBERGandCONTINUANT package consists of the following functions:

Continuant, ContinuantMatrix, HessenbergDet, HessenbergMatrix.

Continuant The function first checks the input and determines additional informations.

In the case of integer determinant orders it calls the package internal function HBrec which recursively
computes the specified determinant according to (4.2). The Maple option remember is used in this function
to avoid multiple identical calls. Each Maple procedure has an associated remember table. The table index
is the arguments and the entry is the function value. When a procedure is called, Maple first looks up the
remember table and returns the result from there if it already has been computed, otherwise the code of
the procedure is executed and the returned result is stored in the remember table under the index of the
current arguments. This enables us to keep the relatively simple recursive implementation instead of a more
involved iterative one without getting inefficient.

If the determinant order is symbolic we proceed as following;:

e If the diagonal generating functions are piecewise defined then the continuant computation is split
recursively according to Corollary 14.

e If the main diagonal is zero we compute the determinant formula according to Corollary 12.
e If the main diagonal is sum of the side diagonals in a row then a formula is determined using (4.7).

e If the diagonal generating functions are constant then we return a formula according to (4.4), otherwise
the corresponding recurrence relation is returned.

HessenbergDet The function first checks the input and determines additional informations.

In the case of integer determinant orders it calls the package internal function HBrec which recursively
computes (see above) the specified determinant according to (4.9).

If the determinant order is symbolic we determine the first lower side diagonal function, the main diagonal
function, the list of diagonal functions at integer positions [[p1,f_p1]l,...,[p_k,f_p_k]1], and the list of
diagonal functions at positions of the form n—d (i.e. those in the upper right corner of the matrix) [[n-q_c,
f_q_cl,...,[n-q1, £_q111.

Now we examine the determined lists and try to recognize one of the special cases for which we were able to
find formulas:

e If the lower diagonal function is zero or the list of all upper diagonals is empty, we have the case of a
triangular determinant and return the product of the main diagonal elements.

e If the main diagonal is zero then it is tested if the list of the nonzero diagonals at integer positions
contains only one element, say at position p. In this case we determine a formula according to one of
the identities (4.12), (4.13), (4.14), and (4.15). The returned formula is a list containing the result in
the case n = (p+ 1)k and the case n # (p + 1)k.

86 CHAPTER 4. DETERMINANTS OF HESSENBERG AND TRIDIAGONAL MATRICES

e If the only nonzero diagonals are the main diagonal, the first lower side diagonal and diagonals at
positions n — d, we compute the corresponding determinant formula according to Corollary 15.

e If only the first lower side diagonal, main diagonal and the first upper diagonal (at position 1) are
nonzero, we have the special case of a continuant and call our function Continuant.

e Otherwise, we determine the recurrence relation according to (4.9). If the diagonals are generated by
constant functions then it might be possible for some easy cases to obtain a closed form using Maple’s
rsolve function.

ContinuantMatrix This function returns the matrix of the specified continuant if the specification was
correct. We use dots “0” to abbreviate the symbolic order. Since Maple treats the dots as usual matrix
entries, this function should be used for illustrative purposes only for symbolic orders.

HessenbergMatrix This function returns the specified Hessenberg matrix if the specification was correct.
The same remarks as above apply.

4.4 Summary

This chapter focussed on the determinant of two matrix classes defined by diagonal generating functions.
First, we examined determinants of tridiagonal matrices following [Met60], the so—called continuants, for
which we derived a simple recurrence relation. The origin of this name was explained illustrating the
role of polynomials of this kind in the field of continuous fractions. We briefly described the relation to
Fibonacci numbers and Euclid’s algorithm. It was possible to derive explicit formulas for some special cases
of continuants like continuants with a zero main diagonal or continuants where the main diagonal is the sum
of the side diagonals of the same row.

Next, we turned to a more general matrix class, the Hessenberg matrices, which we defined using diagonal
generating functions. Again, it was possible to establish a recurrence relation for determinants of Hessenberg
matrices. However, this recurrence allowed explicit formulas only for very simplified versions of Hessenberg
determinants like Hessenberg determinants which had a finite chunk of nonzero diagonals in the upper right
corner including the first lower side diagonal and only one other diagonal.

The corresponding Maple package deals with specifications of continuants and Hessenberg determinants
(with a restrictive specification facility of Hessenberg determinants of symbolic order) and is able to derive
determinant formulas for all the covered general and special cases (see the appendix for examples). Comput-
ing integer order determinants using the package functions yields faster results than using the normal det
function for higher orders (especially for symbolic entries and in the Hessenberg case).

Chapter 5

Determinants of symmetric matrices

In this chapter we investigate determinant formulas of another important matrix class, the symmetric ma-
trices. We will discuss several kinds of symmetry and the effects on the determinant of such matrices. Two
kinds of symmetry will be distinguished, symmetry with respect to a line and symmetry with respect to a
point.

5.1 Centrosymmetric Determinants
We will begin with symmetry with respect to a point, the center of a matrix.

Definition 20 A determinant of order n is called centrosymmetric if the reversed rth row yields row n—r+1
for all v = 1,... ,n. That is, writing down the rows one after another, the determinant is the same read
forward as read backwards.

Example

C is a centrosymmetric determinant of order 5:
ay as Qa3 a4 Qs

bs by bz by b
as a4 a3 as aq

How does this special structure effect the determinant? We will state a result from [Met60] that gives
insight into the determinant structure of centrosymmetric matrices and provides an algorithm to compute it
efficiently.

We want to compute the centrosymmetric determinant A of order n:

ai a12 o Gip—-1 Qin

a1 a22 o G2p—1 Q2n
A=

a2n A2,p—1 " a22 a21

A1pn Aip—1 " a12 a1

87

88 CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

First, suppose that the order is even and we have n = 2m. Performing the elementary row operations
row; = row; + rowsm—;4+1 and the elementary column operations col; = col; — colay 141 for I =1,... m,
we obtain a square of m? zeroes in the upper left corner and the block form

0 D
D' x

Therefore the determinant A of order n breaks up into two determinants D and D’ of order m and we have

A=(-1)"D D'

The special centrosymmetric structure of A yields that

D = ‘(ars + art)‘m
a1,m + a1,m+1 a1, m—1 + Q1,m42 e a12 + a1,2m—1 a1 + a12m
asm + a2 my1 azm—1 + a2,m42 ce 22 + G2.2m—1 as1 + G2,2m
Am—1,m T Gm—1,m+1 Am—-1,m—-1 +Am-1,m+2 - OGm-12+ An-12m-1 Am-11 1 CGn-12m
Am,m + Am,m+1 Am,m—1 + Am,m+2 e Am,2 + Am,2m—1 Am,1 + Am,2m
and
!
D = ‘(art - ars)|m
Am,2m — Am,1 Am,2m—1 — Am,2 ce Am,m+2 — Am,m—1 Am,m+1 — Am,m
OGm—12m — Am-1,1 Om—-12m—-1 —Am,2 ' Am—-1,m+2 — Adm—-1,m—-1 OGm—-1,m+1 — Cm—1,m
a2 om — G21 a2 2m—1 — A22 e a2 m+2 — G2 m—1 a2 m+1 — a2,m
a12m — G11 a1,2m—1 — A12 e a1,m+2 — G1,m—1 a1,m+1 — Q1,m
forr,s=1,... mand t=2m,2m—1,... ,m + 1.

At the moment, every entry of D and D’ is a sum of two elements of the original matrix A. We would
like to have determinants where every entry consists only one one element of A. Since determinants are
multilinear we may break D into a sum of 2™ determinants with “monomial” elements. We observe that for
every determinant

ala1 alozg e alam
a20{1 a20{2 e a2am
D, = D(al :am) =
amal amag e amozm
in this sum there is another determinant
a1, aig, - a1,

a3, A2, v A28,
DﬁzD(ﬂlauﬁm)z .

AmpB; AmpBy, *° Omp,

5.1. CENTROSYMMETRIC DETERMINANTS 89

with o + Br = 2m + 1 for k= 1,... ,m. Hence we have 2™~! pairs of order m determinants and it is only
necessary to compute one determinant of each pair, since the other can be determined from the result.

The signs of D, and Dg when the columns are arranged in their natural order (i.e. the ascending in the
second index of a) are the same if m(m — 1)/2 is even or opposite if m(m — 1)/2 is odd. For, if there are g
numbers following «aj, which are smaller than ay, there are gr numbers following (3; which are larger than
Br. Therefore gy is the number of column exchanges due to the correct position of ay in D, and m — k — g,
the number of column exchanges due to the correct position of 3; in Dg. This means that the sign factor of
D, is (—=1)91F+9m and the sign factor of Dy is (—1)™(m~1)/2 (g1t +9m),

In the case of D’ it is obvious that the same 2™ determinants occur as in D. The signs of the various terms
will be the same except that when there is an odd number of columns with negative elements, the sign will
be changed.

Now we will focus on centrosymmetric determinants of odd orders and present a similar method for computing
their determinant.

Assume n = 2m+1. Performing elementary row operations row; = row; +rowsm,+2—; and column operations
coly = coly — colapyo—y for 1 =1,... ,m, we transform A into a determinant with a rectangle of m + 1 rows
and m columns of zeroes in the upper left-hand corner:

Thus, A breaks up into the product of a m x m determinant D and a (m + 1) x (m + 1) determinant D.

We observe that the determinant D in the lower left-hand corner is identical to D' and the m x m subde-
terminant of D in the upper right-hand corner is identical to D, thus only the first column and the last row
of D disturb. Expanding the last row of D gives the formula

A=-D"-D

)

with

m
. _
D =apmyi,m+1D + Z(—l) Am+1,m+14k Dm+1,k+1-
k=1

It is possible to compute Dy, 41 k41 using the same methods as above.

Unfortunately, the described methods do not enable us to obtain explicit formulas for centrosymmetric de-
terminants of symbolic order n but it clarifies its structure. Moreover, in this case, we reduced a determinant
problem of order n to two determinant problems of order L%J and {%] of special structure and thus the
presented methods are more efficient than general computation methods for determinants with symbolic

entries.

Similar methods for the case of skew—centrosymmetric determinants can be found in [Met60].

After discussing the general problem of centrosymmetric determinants, we will turn to a few special cases
that allow us to derive explicit formulas.

90 CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

We will derive formulas for a more general non—centrosymmetric case which obviously also apply for the
special centrosymmetric case.

Consider the determinant |A| of order n where row i is generated by the constant function b;, apart from
the main diagonal which is generated by a;:

a by e . by

b2 as b2 e b2

|A] = KR :
bp—1 bp—1 an—1 bp_1

by : bn Qn

If we successively subtract the first column from all the other columns then |A] is transformed into arrow
form:

ajq bl—al bl—al bl—al
bg a2—b2 0 0

|A‘ = b3 0 as —b3

Using the formula from the second chapter, this yields

Al =an [J(@ —b) + @ —8)) akb_k by
1=

= =1 k=2

which can be simplified to

n

Al = TT(a = t)

=1

1+ . 5.1
z_b] 6.1)

For centrosymmetric determinants of this kind, we have a; = a,_;41 and b; = b, ;41 fori =1,... L%J
thus (5.1) simplifies to

|3] 3],
Al = [[(@-b)* [1+2) —kbk : (5.2)
k=1

a
=1 = k

Let us discuss another determinant problem. Consider the determinant of a matrix M which is defined by

aj; :i:ja
mi; = bz :Z'<j7
bi*l ,Z>.7

Hence, we are interested in the following determinant.

5.2. AXISYMMETRIC DETERMINANTS 91

ai b1 bl e b1
bl as bg s b2
|M‘ = bg b2 as :
: : bnfl
bnfl bnfl e bnfl ()
Performing the elementary column operations coly = coly — coly for k = 2,... ,n we may transform |M]| to
ai bl—al b1—a1 b1—a1 bl—al
bl a2—b1 b2—b1 b2—b1 bg—bl
bg 0 as — bg b3 — bg :
|M| =
0 . . bn72 - bn73
. . . . o byt —bpoo
bn—l 0 0 e 0 Ap — bn—l
Now we successively subtract coly, from colgy; for k=n—1,n—2,...,2 and get
ay b1 — aq 0 e 0
b1 as — bl bg — Q2 :

‘M|_ ba 0 as — by 0 ’

bnfl —Qp-1

b1 0 . 0 an—bu

which is a 4—oriented 7-form determinant. Transposing, we can apply the theorem for standard 7—forms and
obtain the formula

Al = (a1 = by) o (=1 by Ths (ar — be) TTimyys (b1 —)
+(=1)"ay [T 5 (bp—1 — ax),

which may be simplified to

n -1 n n
|A| = szq H(ak — bi) H (ap —brp—1) + a1 H(ak —br1). (5.3)
=2 k=1 k=I+1 k=2

We omit the simplification in the centrosymmetric case since it does not simplify the structure of the formula.

5.2 Axisymmetric Determinants
The best known type of symmetry is the axisymmetry with respect to the main diagonal.

Definition 21 A matriz A is called (axi)symmetric if a;; = aj; for alli,j=1,... ,n.

92 CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

Axisymmetric matrices arise in many applications, of special interest are the positive definite symmetric
matrices for which there are special algorithms, e.g. Cholesky factorization. Being interested in general
determinant formulas we will have to restrict the class of symmetric determinants a little since axisymmetry
is too general to obtain determinant formulas for the general case.

Following, we will show how a special class of axisymmetric determinants can be reduced to arrow form or
tridiagonal form respectively.

Consider axisymmetric matrices A that are generated by two functions f and g, such that a; = f(i) =: f;
and a;; = g(i) =: g; for i < j. Hence we are interested in a determinant formula of matrices of the following

type:

fi o g1 T g1
g f2 92 ' ;
4= gr 92 L gno
: fa—1 gn-1
g1 9n-2 YGn-1 fn

Performing the elementary column operations coly, = coly — col,_1 and afterwards rowy = rowy — rowg_1

for k=n,n—1,...,2, we may transform |A| into continuant form:
f —fi+a 0 0
-fi+g fi =20+ f —fo+ 90 - :
Al=| 0
. : _fn—2 + gn—2 fn—2 - an—Q + fn—l _fn—l + gn—1
0 0 _.fnfl +gn71 fnfl _29n71+fn

This looks suggestive that we might be able to apply identity (4.7) getting a reasonably nice formula but
unfortunately the assumptions are a little different, so we have to settle with the recurrence

|A‘ = K(Tl) = (fnfl +2gn71 + fn) . K(n -]-) - (.fnfl _gn71)2 . K(n - 2)

with K (1) = fi and K(0) = 1. Having generating functions f and g with a;; = f; and a;; = g; for i < j
yields a similar recurrence.

Let us pick out two easy special cases:

If g = fi fori = 1,...,n — 1 then we obtained diagonal form after the transformation and have the
determinant formula

n

Al = £ [[(h = fimo)- (5.4)

=2
If g is constant we subtract the first row from all other rows instead and reach arrow form

f g g E g
g—fH fo—g 0 0

Al =|g-fi 0 fs—g

g—fi 0 e 0 fa—yg

5.2. AXISYMMETRIC DETERMINANTS 93

Now we may use the result on arrow determinants of the second chapter to obtain the formula

n

IA\=H(fz—g)(1+ng
k=1 "k

).
=1 -9

(5.5)

Let us focus on another special axisymmetric matrix class. Consider matrices generated by functions m and
p, where a;; = p(i)p(j) for i < j and a;; = m(3) :

. - S
p(Wp(n) -+ p(n—1)q(n) m(n)
Performing the column operations coly = coly, — % -coly for k = 2,... ,n (provided p(1) # 0) we obtain
arrow form for the determinant:
m(1) 2B (p(1)? - m(1) B (p(1)2 —m(1)) - - E(p(1)2 = m(1))
p(Lp(2) m(2) —p(2) 0 0
p(1)p(3) 0 m(3) — p(3)? 0 - 0
A= . .
: : : " - 0
p(1)p(n) 0 0 0 m(n) — p(n)?

Extracting the factor (p(1)2 —m(1))/p(1) from the first row and the factor p(1) from first column (provided
p(1)?2 —m(1) # 0), this simplifies to

p(1)ﬂ21(717)n(1) p(2) p(3) p(n)
p(2) m(2)-p(2)? 0 0
Al = ((1)* =m(D) | p(3) 0 m(3) - p(3)’
. , 0
r(n) 0 0 m(n) - p(n)’

We obtained a simple arrow form that we can transform into triangular form via

row; = row; — srowy, fork=2,... n.

_ P
m(k) — p(k)?

Hence we obtain the following determinant formula

4] = m(1) [T (m(k) =p(k)*) +>_p(0)* [T (n(k) = p(k)?),

k=2 =2

which may be further simplified to

94 CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

n

— m _ 2y | - p(k)2
Al = TLon) =907 |1+ 3 5= | (5.6)

k=1

Let us illustrate this formula with a little example.

Example

Consider the axisymmetric determinant

2
ri+1 zi70 T3 S T1Tp
Ty T34+ 1 mox3 e Toln
|A‘ = 13 o3 ZE% +1
ITn—1Tn
T1Ty ToTp cee Tp_1Tp azi +1

with main diagonal generating function m(i) = 7 + 1 and function z;z; generating a;; for i < j (that is
p(i) = z; and p(j) = ;). Applying identity (5.6) yields the nice determinant formula

Al =142 +23+ -+ 2.

In closing, we discuss another special class of axisymmetric determinants. Let us consider determinants |A|
generated by the function a;; =c¢-(j —i) + k :

k c+k 2c+k -+ (n—1)c+k
c+k ko c+k :
A= 2c+k cHk K 2+ k
: ' c+k
(n—lec+k -+ 2c+k c+k k
We can simplify this significantly by performing the operations rowy = rowy, — rowgyq for k=1,... ,;n—1,
and get
—c ¢ ¢
—c —c
Al =
—c —c —-c ¢
(n—De+k -+ 2c+k c+k k

It remains to add the first column to all the other columns to obtain a triangular determinant

—c 0 0 0

—c —2c 0 0

‘A| = : : .. . :
c —2c —2c 0

m—=1c+k (2n—3)c+2k nc+2k (n—1)c+ 2k

5.3. ZERO-AXIAL SKEW DETERMINANTS 95

Hence we receive the formula

Al = (=1)"'e(2¢)"2((n — 1)c + 2k). (5.7)
Similar proceeding, using column operations, establishes that the determinant vanishes if a;; = ¢- (i + j) +d.

Example

Consider the axisymmetric determinant |A| of order n generated by a;; = j —i + 1:

1 2 3 n

2 1
Al=13 . . . 3
.12
n 3 2 1

Using (5.7), we may establish the following identity

|Al = (-1)" " (n+1)-2"2.

While we cannot derive a formula for the case a;; = ¢ (j — i) + d with a maindiagonal different from d, it can
be shown that the case a;; = ¢- (i + j) + d with a nonzero main diagonal can be reduced to a oriented “fat”
R—form determinant: Consider the determinant of the axisymmetric matrix A of dimension n with a;; = k;
and a;; = c¢- (i + j) + d otherwise. Performing the row operations as above, we get

—3c—d+ki 3c+d-—k —c —c

—c —5¢c—d+ ks bHe+d—ks

: . . . —c

—c —c —2n—Dec—d+knr 2n—1)c+d—k,
(n+1)c+d (2n—2)c+d (2n—1)c+d kn

Subtracting the first column from all the other columns, we are left with a oriented fat R—form determinant

—3C—d+k1 6C+2d—k1—k2 26+d—k1 2C+d—k1 26+d—k1
—c —4dc—d+ ko 6c+d— ks 0 0
—c 0 —6¢c —d+ k3 :
: : : : 20n — e+d—k, 1 0
—c 0 0 —2(n—=1)c—d+ kp—1 2ne+d—ky
(n+Dec+d c (n—3)c (n—2)c —(n+ec—d+ky,

We omit the resulting involved formula that is even too complicated to be handled by Maple using the
corresponding implemented Maple package function.

In the following section we will discuss how to obtain formulas for skewsymmetric determinants of this type.
5.3 Zero—axial skew determinants

Now we take a look at a special case of axisymmetric determinants and show its connection to matching
theory.

96 CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

Definition 22 A matriz A is called zero—axial skew matrix if a;; = —aj; and a; = 0. Its corresponding
determinant is called zero-axial skew determinant.

Example
0 a2 a1z 14
A —as1 0 (23 (24
—as; —as 0 asz
—agy1 —ago —as3 O

A is a zero-axial skew matrix.
Let us begin with a few simple observations concerning zero—axial skew determinants.

Observation

A zero—axial skew determinant of odd order vanishes.

If we change the signs of all elements, e.g. by multiplying each column with -1, the determinant of a zero—axial
skew matrix does not change since transposing the matrix would yield the same. However, a determinant of
odd order is changed in sign and therefore has to be zero.

What happens for even orders? We present an old result taken from [Met60].

Theorem 23 A zero—azial skew determinant of even order is the square of a rational function in its ele-
ments.

Proof.

For any zero—axial skew determinant |A| of order n we have

[Avr| - [Ass| = [Aps| - [Asr| = [A] - [Ars,rs.| (5.8)
according to [Met60] (page 393).
If n is even then |A4,,| = |4ss| = 0 for all r, s because of the last observation and the fact that all coaxial
minors of a zero—axial skew determinant are zero-axial skew again. Moreover, |A,s] = —|Ag,| . Therefore
(5.8) simplifies to
|Ars?

|Ar8|2 = |A] - [Aps,ps| o1 [A] = (5.9)

‘AT‘S,’I"S|

We may use (5.9) for an inductive argument to prove the theorem, for it shows that the theorem is true for
|A| of even order n if it is true for |A,s rs| of even order n — 2. Since the theorem is obviously true for n = 2,
it must also hold in general.

Looking at the coaxial minors of order two of |A|s, we see that their product aia3, - a3, ; 5, is a term
of the determinant and that therefore one square root of |A| contains the term +aj2a34 - - - @25,—1,2n and the
other —ajsas4 - - azp—1,2n. This leads us to the following important definition.

5.3. ZERO-AXIAL SKEW DETERMINANTS 97

Definition 23 The square root of a zero—azial skew determinant |A| = |(a;;)| of order 2n which contains as
a positive term ai2as4 - - Gap—1,2n 5 called a Pfaffian function of the elements lying on the upper side of the
zero main diagonal and will be denoted as Pf(A).

Hence we can restate the previous theorem as

|A| = Pf(A)? (5.10)

for zero—axial skew matrices A of even order.

Pfaffian functions can be defined in many ways, we will use another (see [Knu96]) to illustrate the connection
of Pfaffians to perfect matchings:

For each possible partition P = {{i1,j1},... , {in,jn}} of the set {1,...,2n} into ordered pairs, form the
expression
ap — son 1 2 -+ 2n—-1 2n G
P =58 il jl e 'Ln]n 1 tndn?

where

1 2 -+ 2n—-1 2n

il jl in]n
is a permutation of the elements 1,2,...,2n — 1,2n and sgn denotes the sign of this permutation. An

alternative definition of the Pfaffian of a matrix A4 is

Pf(A) =Y ap. (5.11)
P

We now state some fundamental results following [LP86] relating the Pfaffian to perfect matchings in a
graph.

Recall that a matching in a graph G = (V, E) is a set of edges that have no vertices in common. A matching
is perfect if it covers all of V(G). A simple theorem tells us that a bipartite graph G has a perfect matching
if and only if the determinant |M ()| is not identically zero for M (z) = (m;;) and

M — ze, ife = (vi,v)),
Y 0, ifv;,v; non-adjacent.

Surprisingly, the use of determinants can be extended to non-bipartite graphs. Consider a graph G with
V(G) = {v1,...,u}. To each edge e we assign a variable z, and define the matrix A(z) as follows:

A(z) = (aij)kxk
where
z., ife = (v;,v;)

a;j =14 —x., ife=(vj,v;),
0, ifv; andv; non-adjacent.

3

The following result is due to Tutte (1947).

98 CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

Theorem 24 Let G be any graph and let A(x) be defined as above. Then graph G has a perfect matching if
and only if the determinant |A(z)| is not identically zero.

Proof.

If k£ is odd then G has no matching, of course, and moreover, |A| = 0 since the determinant of a zero—axial
skew matrix of odd dimension vanishes. Thus the theorem is true for graphs with an odd number of nodes.
So assume that k = |V (G)| = 2n.

Now each nonzero term ap in the defining identity (5.11) of Pf(A(z)) corresponds to a perfect matching of
G and vice versa. Furthermore, different perfect matchings of G' correspond to terms consisting of different
variables. Hence Pf(A(x)) = 0 if and only if G has no perfect matching. Using the result (5.10), the theorem
follows.

Finally, let us point out that the existence criterion given in the theorem can be used to obtain a probabilistic
algorithm for finding a perfect matching in a graph and that it is even possible to use Pfaffians to count the
number of different perfect matchings (for details see [LP86]) . Other applications of Pfaffians include plane
partitions and problems in differential geometry.
After this short excursion, let us turn back to zero—axial skew determinants. A more constructive definition
of the Pfaffian of a zero—axial skew matrix A of order n would be the recursion:
n
Pf,(A) =Y (=1)Farx - Pho_o(|A11.kk]) (5.12)

k=2

for even n and the base case Pfy() = 1 which can be viewed as “minor expansion” for Pfaffians. See [DW95]
for a proof.

It is interesting to note that Pfaffians are more fundamental than matrices:

Theorem 25 Any determinant may be expressed as a Pfaffian of the same order.

Proof.
Consider the the determinant A of order 2n:
%(011 —ann) - %(am + an1) %(aln +an) - %(011 + air)
1 ' 1 1 1
A — §(an1 - aln) e §(ann - ann) E(ann + ann) e §(an1 + aln)
_%(anl + aln) e _%(ann + ann) _%(ann - ann) e _%(anl - aln)
1 ' 1 - 1 ' 1 '
—s(an +an) - —3@n+an) —5(am—am) - —3(a1 —an)
which is zero—axial and skew centrosymmetric. Performing the elementary operations rowy = rowy +
rowp—g+1 and colp—p = coly—i, + coly for k = 1,... ,n, we may reduce A to the product of two n x n

determinants. A little thought establishes that we now have A = |A]> with A = (a;j)nxn. Hence |4] =
A'/2 = Pf(A). Since |A| is an arbitrary determinant, the theorem follows.

So far, we examined only zero—axial skew determinants. Sometimes, skew (axi)symmetric determinants
are defined to have a possibly nonzero main diagonal. What happens to general skew determinants, i.e.
determinants that differ from the zero—axial skew determinants only in a nonzero main diagonal 7 It is
interesting to see that we may express a skew determinant in terms of the main diagonal elements and
zero—axial skew determinants.

5.3. ZERO-AXIAL SKEW DETERMINANTS

Theorem 26 Let |M| be a skew determinant of order n,

T a12 A1n
—ay - :
(M|=| ;
: ’ ’ An—1,n
—Qin e —Qp—1,n Tn

and |A| the zero—azial skew determinant obtained from |M]|,

0 a2 A1n

—a12

Al=]

: An—1,n

—Qin e —Qp—1,n 0

If n is even, we have
‘M| = |A‘ + E ‘ri1xi2|Ai1i2,i1i2‘ + E xil‘riz‘ri3xi4|Ai1i2i3i4,i1,i2,i3,i4‘
1<i1<ia<n 1<i1<i2<ig<ia<n

+oot E Ty« xin72|Ai1"'in72ai1"'in72| +Tp -

If n is odd, we have

‘M|: Z ‘ri1‘Ai1,i1| + Z ‘rh‘rileé|Ai1i2i3,i1i2i3|

1<ii<n 1<ii<ia<iz<n

+-+ E Ty Tiy oAby gy in o] T 21

1<iy-in—2<n

Proof.

99

“Tn.

‘T

We expand the skew determinant by Cayley’s theorem (see pages 107ff. in [Met60]) and observe that the

terms having an odd number of diagonal elements vanish.

Note that, if z; = --- = 2, = £ , we have a power series in = with the squares of Pfaffians as coefficients.

This completes our presentation of general zero—axial skew determinants. Further results can be found in

[Met60] and a brief history of Pfaffians is contained in a paper by Knuth [Knu96].

Now we want to turn to special cases of skewsymmetric determinants. Recall the special matrix classes of

the previous section. We will try to obtain similar results for the skewsymmetric case.

Consider a skewsymmetric matrix of the form a;; = g = —a;; with maindiagonal a; = f;:
fio 9 - g
_g .
Al=1]
: 9

-9 - =9 [fn

100

Performing the row operations rowy = rowy —rowg—q fork =n, ...

CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

,2, this reduces to a 7-form determinant:

fi g g g
-fi-g9g fo—g O 0
‘A|: 0 _fQ_g 5
. . fnfl_g 0
0 0 —fac1—9 fo—g

whose formula can be obtained using results from the second chapter. Since the resulting formula is somewhat
involved, we omit it and point out the possibility to derive it with the corresponding Maple package function

Form7.

Recurrence relations similar to the previous section for the case a;; = f; and a;; = g; = —aj; or a;; = g; =
—aj; can be obtained using the same techniques.

In closing, we consider a skewsymmetric matrix of the form a;; = ¢- (i — j) + d = —aj;. Applying the same

technique of the previous section, subtracting subsequent rows rowy = rowy — rowgs1, we obtain

2d — ¢ —c —c —c

—c 2d — ¢
|A] = e e
—c —c 2d—c -c
(n—1ec—d 2c—d c¢—d d

which simplifies to 3—oriented arrow form after adding the last column to all the other columns:

2d 0 0 —c

0 2d
4] = : " 0 —c
0 0 2d —c
(n—1)c—2d 2c—2d c¢—2d d

Using the arrow form formula from the second chapter, we receive

|A| = (2d)" ' |d— (n— 1)c+ i

=1

Let us turn to the case of a;; =c- (i +j) +d =

2

(5.13)

—aj;. After performing our standard trick, we get

5c+2d —c —c —c
c 9c+ 2d —c —c
Al = . .
c c (4n=1)+1)c+2d —c
—(n+1l)c—d —2(n-1)=1)c—d —2(n—1)c—d 2nc+d

repeating the row operations rowy = rowy — rowgy; for k=1,...

,n — 2, we are left with

5.4. PERSYMMETRIC DETERMINANTS 101

4c+ 2d —10c — 2d 0 0 0

0 8c+ 2d —14c—2d 0 0

0 0 An—2ec+2d —(An—-1)+2)c—2d 0

c ¢ c (4n=1)4+1)c+2d —c
—(n+1)c—d —(2n—-3)c—d —(2n-2)c—d —(2n—1)c—d 2nc+d

that can be transformed into a fat N—form determinant (swapping the n — 1st row up to the top) whose
formula can be obtained using the results of the second chapter. Since the resulting formula looks rather
nasty, we omit it and point out the possibility to obtain it using the corresponding Maple package function
Nform.

It remains to note that having a different maindiagonal prevents us from successfully applying these tech-
niques.

5.4 Persymmetric Determinants
Let us have a look at yet another type of symmetry.
Definition 24 A n x n matriz A is called persymmetric if it is symmetric with respect to its northeast

southwest diagonal, i.e. a;; = @p—jy1,n—i+1 for alli and j.

This is equivalent to requiring A = EATE with

0 0 1
E=|: 0
0.

1 0 0

The determinant |A| of a persymmetric matriz is called persymmetric determinant.

Note that persymmetry differs from the previously discussed axisymmetry only in that we now have symmetry
with respect to the counter main diagonal instead of the main diagonal.

There are several matrix classes that belong to the class of persymmetric matrices. We will discuss two of
them in the following: The Toeplitz matrices and the Circulants.

5.4.1 Toeplitz Matrices

Matrices whose entries are constant along each diagonal arise in many applications (e.g. differential equa-
tions) and are called Toeplitz matrices. We give a formal definition.

Definition 25 A nxn matriz A is called Toeplitz matrix if there are constant diagonal generating functions

such that a;; = dj_; for all i and j.

102 CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

Obviously, Toeplitz matrices are persymmetric. Toeplitz matrices and Toeplitz systems have been investi-
gated rather deeply . There is a variety of fast algorithms to solve Toeplitz systems, the special structure of
Toeplitz matrices enables us to obtain a running time of O(n?) to solve linear Toeplitz systems (see [GvL96]).

Since we are interested in general determinant formulas it is necessary to restrict us to special forms of
Toeplitz matrices.

At first, we will investigate a matrix class that consists of only two distinct elements. All diagonals are
generated using either one of them.

Definition 26 A matriz M of order n is called a two element diagonal matrix if all of its diagonals are

generated by two distinct elements a and b. If the “a” diagonals are at position p1,ps, ... ,pr and the “b”
diagonals at the remaining positions, we will write M, (a,b, [p1,p2; ... ,pr])-
Example

Mg(a,b,[-1,0,2]) =

o>t oo o QR
TR Q>
VSR Qo R
R Qe o
[SEESEES ISR RS]
QU o>

How does the determinant of two element diagonal matrices look like? Since the matrix is dense, minor
expansion does not look like a good idea, especially, since we only have two distinct elements. Elementary
row and column operations seem to be more in place here.

First, we will look at the special case that we have a a band without holes between the main diagonal and
a diagonal at position k£ > 0. We will proceed as follows:

Starting with

a a b b
b
b
M (a,5,[0,1,..., k)] =
a
U
1. Subtract column n from column n — 1 for I =1,... ,n — 1 and get
a—b a-1> a—b a-0» 0 0 b
0
0 b
0 0 a—b a-0» a—2>b a—b b
—a+b -~ —a+b —a+b 0 0 - 0 a (5.14)
—a+b -+ —a+b —a+b —a+bd O 0 a
—-a+b -+ —-a+b —-a+b —a+b -+ —a+b 0 a
—a+b -+ —a+b —a+b —a+b -+ —a+b —a+b a

5.4. PERSYMMETRIC DETERMINANTS 103

2. We now subtract row n from rown — [l for [=1,...)k — 1 and get
a—b a-—b a—b 0 0 b
0 a-b a-b - a-b . : b
0 0 a—b a-—> a—b b
0 0 0 a—>b a—b 0
0 0 0 0 a—b 0
—-a+b -+ —a+b —a+b --- —a+b —a+b a

3. Now, we are left with an upper triangular determinant with a nonzero last row that we want to get
rid of in the following. Adding row 1 to row n, the first k& elements of row n become zero while the
last element becomes a + b. Successively adding row k+ 1,2k +1,..., [21| k + 1 to the last row, it
is possible to eliminate the first |21] k elements of the last row while the last element sums up to
a+ | 22| b and we are left with

a—b a—-b --- a—b 0 0 b
0 a—b a-b .- a—>
: 0 b
0 0 a—b a—>» a—2>b b
0 0 0 a—> a—>» 0
0 0 0 0 a—>b 0
0 0 0 o —a+b —a+b oa+[2]b

4. The remaining nonzero elements of the last row (apart from the last element) can be eliminated by
adding row n — [where n — k <1 < n — 1 (precisely we have to add row n — (n — 1) mod k if there
still are nonzero elements beside the last element of row n). This does not affect the last element of
row n, hence we obtained an upper triangular determinant. Since we used only elementary row and
column operations, we obtain the formula by multiplying the main diagonal elements and receive

|Ma(a,b,[0,1,... k)| = (a—b)""(a+ VT_IJ). (5.15)

We imposed the restriction that the a band has to start at position 0 (i.e. starting with the main diagonal).
Clearly, |M,(a,b,[q,...,p])] =0 for 2 < ¢ < p, since we obtain a zero column applying the same process as
above. A little thought establishes the formula

‘Mn(aa b: [1, cee /k])‘ = (_1)n+1(a - b)nilb'
for arbitrary k and the a band starting at the first upper side diagonal.

What about |M,(a,b,[—q,...,p])| ?

104 CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

Agsume w.l.o.g. that ¢ < p. Performing step 1. we get

a—b -+ a—b 0 0 b
a—>b
0
0
0 0 a—b -+ a-> a—b b
_a+b . 0 e . - s 0 a
—a+b - —a+b 0 0 a

Comparing this with (5.14), we observe that we would have something similar if we could transform the first
q rows appropriately and swap them down to the bottom of the matrix.

We attempt to transform the first ¢ rows from (a — b,... ,a — b,0,...,0,b) to (0,...,0,—a+Db,...,—a+
b,0,...,0). To achieve this, we subtract row ¢ + 1 from row 1, then add row (p + ¢ + 1) + 1, then subtract
row (2¢+p+1)+1 and add row 2(¢g+p+ 1) + 1, and so on until we finally subtract row n —p—1 to get the
desired form. The other rows are treated similarly: Row [is transformed by successively subtracting row
g + 1 and adding row (p+ ¢+ 1) + 1, subtracting row (2¢+ p+ 1) + 1 and adding row (2¢ + p+ 1) 4+ until
we subtracted row n —p — 1.

After this transformation, we have

0 0 0 —-a+b 0 0
a—>b a—b 0 0 b

0

: I . 0 b

0 0 a—>b .- a—=>b b
—a+b -+ «« —a+b 0 0 0 a
—a+b -+ -+ —a+b —a+b 0 0 a

We observe that for n = k- (p + ¢ + 1) + 1, there is only one zero after the —a + b triangular block in the
first ¢ rows. The number of right end zeroes increases by one with ascending n until a maximum of p+ g+ 2
forn=(k+1) (p+q+1) (afterwards it drops to one again). This means that the position of the last
occurrence of —a + b in the first row coincides with the position of the last occurrence of —a + b in row n —p
for n = k(p+ ¢ + 1) and that the position of the first —a + b occurrence in the first row coincides with the
first zero occurrence in the last row for n = k(p + ¢ + 1) + 1. For all other n it is possible to subtract two
successive rows of the first ¢ rows from two successive rows of the p last rows, making the resulting rows
identical and hence detecting the singularity of the matrix for those values of n.

Let us now focus on the two remaining cases:

Assume that n = k- (p+ ¢+ 1) + 1 and notice that in this case, the —a + b triangular block of the first ¢ rows

is located exactly above the zero gap in the last p rows. Thus, we add the last row to all of the first ¢ rows.

After swapping row ¢ — I down to the bottom for [=0,... ,q — 1 using ng — Q(qQ—H) row exchanges, we get

5.4. PERSYMMETRIC DETERMINANTS 105

a—1b a—b 0 0 b
0
: I . 0 b
0 0 a—> a—b b
—a+b -+ v —a+b 0 0 0 0 a
—a+b -+ - —a+4b -+ —a+b 0 - 0 0 a
—a+b - -+ —a+b - —a+b 0O - 0 —a+b a
: : : 0 : : :
—a+b -+ -+ —a+b -+ —a+b —a+b --- --- —a+b a

Now it remains to get the triangular block in the bottom right corner into desired form. Therefore we swap
column n — 1 through to column n — g, then the new column n — 1 through to column n — ¢+ 1 and so on,

using q(q2—1) column exchanges. (We could achieve the same result with pairwise swapping and L%J column

exchanges but we prefer the previous method since sign factors cancel out). Finally, this yields

a—5b - . a—b - a—2> 0 0 a—2> b
0
. . . : : 0 . :
0 0 a—5b --- a—>b a—> a—> b
—a+b -+ -+ —a+b 0 0 0 a
: : : : : (5.16)
—a+b -+ -+ —a+b --- —a+b 0 0 a
—a+b -+ -+ —a+b -+ —a+b —a+b 0 0 a
: : : : K 0 a
—a+b -+ -+ —a+b -+ —a+b —a+b -+ -+ —a+b a

which is almost like (5.14) (after performing step 1. on M, (a,b,[0,... ,p+ g+ 1]). Observe that performing

steps 2. - 4. on (5.16) indeed yields the same triangular determinant. Hence we get the formula

[Ma(a,b,[=q,...,p])| = (=1)""(a —)"~ (a + kb). (5.17)

forn=k-(p+q+1)+1.

Now we discuss the second case: Assume that n = k- (p + ¢ + 1). Since there is a gap of p + ¢ zeroes
between the column position of the last —a + b occurrence of the upper ¢ x n block and the last column, we
successively add row n —p —Il torow [for l = 1,... ,q and get

106
0 0 0
0 0 0
a—> a—> 0
0
0 0 a—>
b—a b—a b—a
b—a b—a b—a

Then we add row n — ¢ to the the negative of row [for [=1, ...

—a+b
a|_b ..
a—> a—> 0
0
0 0 a—-b ---
—a+b —a+b 0
—a+b —a+b

Next, we swap row [down to the bottom for [= 1,...

CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

a—> a—b a—-b 0 0 b
: : : 0 b
a—> a—b a-1» a—b b
. . . 0 b

0 b

a—b b

0 0 0 a
b—a 0 0 a

,q, introducing a signfactor (—1)? and get

—a+b —a+b O 0 a—2>b
: : 0 :
—a+b —a+bd —a+b a-—-0»
0 b

0 b

a—b b
0 0 0 a
0 : : :
—a+b 0 0 a

,q using (n — 1)q row exchanges. This resembles

(5.14) for M, (a,b,[0,...,p+ g+ 1) apart from entries a — b instead of a in the last g rows. After performing
step 2. we just differ in the last element of the last p + ¢ rows where we have a — b instead of a in the last

5.4. PERSYMMETRIC DETERMINANTS 107

row and —b instead of 0 in the others. Since n = k(p + ¢ + 1) we have to perform step 4. after step 3. and
get the product of the main diagonal elements

|Mn(a, b, [_q, C. ,p])‘ = (a _ b)n—l(a + \‘I%J b)

Since n =k - (p+ ¢ + 1) and taking the sign factor into account, we end up with the determinant formula

| Ma(a,b,[=q,....p])| = (=1)""(a = b)" " (a+ (k = 1)b).
Recalling that transposing the matrix would remove the restriction g < p, we have the following theorem.

Theorem 27 Let My,(a,b,[—q,...,p]) be a two element diagonal matriz of order n with q,p € IN. The
determinant formula is

(<) V(= D" Ma+ kD), ifn=k(p+g+ 1)+ 1
|M'n(a=bv [_q:--' :p])‘ = (_l)nq(a_b)nil(a-l_(k_]-)b)a ifn:k(p+Q+1)
0, otherwise.

Closing, we will briefly elaborate on the question: How does the determinant change if we consider a bands
with “holes”, i.e. what happens to the general problem |M,(a,b, [p1,... ,pr)| with py <+ < pg?

We will investigate the case that p; = 0. (Obviously |M| = 0 for p; > 1 and |M| = (=1)**Y)(a — b)*~"b for
ki =1).

After performing step 1. we receive something like

a—b 0 a-b 0 a—>b 0 0 b
0
0 0 a—"b 0 a—>b 0 a—b b
-a+b -+ —a+b —a+b 0 —-a+b 0 —a+b a
0 0 0 0 a—1b 0 a—b b
-a+b -+ —a+b —a+b —a+b —-a+b 0 —a+b a
0 0 0 0 0 0 a—b b
—a+b -+ —a+b —a+b —a+b —a+b —a+b —a+b a

It is possible to transform this into triangular form with a nonzero last row by subtracting the last row from

row n — p; for I =2, ...,k which leaves us with something like

a—>b 0 a—>b 0 a—>b 0 0 b
0
0 0 a—>b 0 a—>b 0 a—-b b
0 0 0 a—2>b 0 a—b 0 0
0 0 0 0 a—>b 0 a—b b
0 0 0 0 0 a—>b 0 0
0 0 0 0 0 0 a—b b

—a+b -+ —-a+b —-a+b —a+b —-a+b —a+b —a+b a

Unfortunately it is not possible to simply apply step 3. and 4. because of the holes. Thus, we try to
transform the matrix into arrow form by subtracting row n — 1 from row n — 1 —p; , for Il = 2,... , k, then
row n — 2 from rown — 2 —p; for I = 2,... ,k and so on until we reached arrow form. Now, since the first

108 CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

n — 1 elements of the main diagonal are a — b and the first n — 1 elements of the last row are —a + b, we
simply have to add row [to row n for [= 1,... ,n — 1 to reach triangular form. However, in general it is not
possible to find a defining formula for the resulting last element of the last row and hence the determinant.

After investigating determinant formulas of two element Toeplitz matrices we will show how a special class
of Toeplitz matrices can be transformed into frame form which means that its determinant formulas can be
determined using the theorems of the second chapter.

Consider determinants of Toeplitz matrices of the form A(n,[y,b,...,b,a,¢c,b, ... bz]):
a ¢ b -+ b z
b . . T b
|A] =
b
b c
y b b a

Subtracting the first column from all remaining columns it is possible to transform the Toeplitz determinant
into fat R—form

a c—a b—a - b—a z—a

b a—b c—b 0 0
‘A|:z? 9 R L

: : . . . 0

b 0 0 a—b c—b>

y b-y -+ b—y b—y a-y

thus we get a determinant formula using results from the second chapter. We omit the resulting formula
since it is quite involved and point out the possibility to obtain it using the corresponding package function
Rform.

Closing we will show how it is possible to compute determinant formulas for a certain class of Toeplitz
matrices reducing them to simple Hessenberg matrices. Consider determinants of Toeplitz matrices of the

form A(n,[b,...,b,a,c,...,c,u1,us,...,up]) with integer p.

a c Is U1 upfl up

b uy

Uy

Al =

c

.

b b a

Performing the operations coly, = coly — colg4q for k =1,... ,n — 1 we may reduce |4| to

5.4. PERSYMMETRIC DETERMINANTS 109

a—c 0 --- 0 c—ur ur—uxy -+ Up_s—Up_1 Up—1 — Up Up
b—a Up—o — Up_1 Up_1
0
Uy — U2 U2
C — U U1
|A] =
0 c
0 c
: . i a—c c
0 0 b—a

which is a Hessenberg determinant. Expanding the last row like in the proof of (4.9) yields
Al = HB(n —1L,b—a,a—c0,...,0,c—up,u; —Us,...,Up_1 — Up)) (5.18)

-I-Z “(b—a)'HB(n —1—1,[n —a,a —¢,0,... ,0,¢—up,uy —Us,y ... ,Up 11 — Up_1])

Z (b—a)(a—o" "+ Z Ytnsp1(b—a)'(a — ¢)"1=".

l=n—p+1

Recall that in (4.10) we were able to derive a formula for the type of Hessenberg determinant arising in this
computation.

Analogous proceeding for Toeplitz matrices of the form A(n, [b,... ,b,a,... ,a,¢,... ,¢c,u1,... ,up]) that have
an a band of fixed integer length ¢ yields

0 0 a—-c¢c 0 .- 0 c—uw wp—ux us—us -+ Up—1 —Up U
b . 1
0 s — us

Up — U2 U2

C — U U1

0 c

0 c

a—-c c

0 a

: . . 0 a
0 0 b—a a

Expanding the last row like in the proof of (4.9) again and assuming g = p for simplicity, we receive

110 CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

qg—1
Al = Z(—l)la- (b—a)HB(n —1—1,[b—a,0,...,0,a—¢,0,...0,¢—uy,uy — Us,... ,Up |1 —Up_1])
=0
n—p
+> (-D'e(b—a)'HB(n — 1 - 1,[b—a,0,... ,0,a - ¢,0,... ,0])

l=q

+ Y (D'upsp(b—a)HB(n —1—1,b—a,0,...,0)).
l=n—p+1

Note that we found a formula for the type of the occurring Hessenberg determinants in (4.12) and (4.15).
However, the formula involved two cases depending on the determinant order. This distinction of two cases
leads to a g + 1 case distinction for |A|. Note that the Hessenberg determinants in the second and the third
sum are either zero or have a nice closed form.

The case ¢ # p is more clumsy but also results in a ¢ + 1 case formula. We omit the details pointing out
that the implemented Maple function ToeplitzDet also deals with this case.

5.4.2 Circulants

We discuss another special form of persymmetric determinants following [Met60].

Definition 27 A n x n matriz A is called a circular matrix if any row is a “rightshifted” version of its
preceding row. We will refer to the determinant of a circular matriz as circulant. If the first row of C' is

ai,...,a, we will denote the circulant as C(ay,. .. ,ay).
Example

ar ax - an—1 ay

an a1 Gz - ap_q

Clay,...,an) =

G . o

ax a3z . an @
A circulant is evidently a special case of a Toeplitz determinant (with diagonal generating functions as, . .. ,an,
a1, ... ,a,) and therefore persymmetric.

It is frequently more convenient to define a circulant as a determinant such that any row is the “leftshifted”
version of its predecessor. We will denote such circulants as C'(ay, ... ,a,). By transposition of the rows it
appears that

C'(ay, ... an) = (=1)=DO=220(a, ... ay). (5.19)

We will now present a fundamental theorem concerning circulants.

5.4. PERSYMMETRIC DETERMINANTS 111

Theorem 28 Consider the circulant C(aq,. .. ,ayn). The following formula holds

Clar,... ,an) = [[(a1 + &az + Gas + - + & an), (5.20)
k=1

where
&, = exp(2mi - k/n)
is a complex nth root of unity.

Proof.
Let & = exp(27i - k/n) and A be the following alternant

&1 & 0 &
A=) . .
{zfl ;zfl Errlt—l

Multiplying C = C(ay,... ,a,) from the right with A we get

ar + axéy + -+ ané] ! ar+axba+- -+ anly o artaln + o an!
C.A as + agéy + - + a &7 ay+azé+- -+ & aptasbn o+ all?
ap +aréy + -+ a1 &7 apt el a7 aptaba o+ apa
Since & = & mod o nd &Er=¢"" mod n £ positive p, and using), to represent a; + as&y + - - - + et

this simplifies to

o, 9, 9,
0:1& 026 - O0p,
C-A= . . i =006, A
A Y SRR M

and the theorem follows.

It may be observed that every circulant contains a; + as + - -+ + a, as a factor and that circulants of even
order also contain the factor a; —as +ag — -+ + apn—1 — an.

Following we will take a look at several special circulants and show how we can obtain their specific formulas.

Corollary 16 Consider the circulant C(a,... ,a,b,... ,b) of order n, where p is the number of a’s and q is
the number of b’s in a row (i.e. p+ q = n).The following formula holds.

_f (pa+gb)(a—b)""", ged(p,g) =1
Cla,...,a,b,... ,b)= { 0. otherwise. (5.21)

112 CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

Proof.
Denoting C = C(a,... ,a,b,...,b) and applying (5.20) we get

=JJa(t+&+ - +&) +b(E+---+ &7 (5.22)
k=1

Choosing k = n we obtain the factor pa + gb. Since 1+ & + -+ + &' = 0 we may rewrite (5.22) as

= (pa + gb) f[a—b)(1+&+-+&) =@atagh)a-b" " [JA+&+ - +&).

It remains to show that P := [],_, 1+ &+ LT ") is 1if ged(p,) = 1 and 0 otherwise. We may rewrite
P as

5—1
T

If ged(p,q) = 1 then it follows that ged(n,p) = 1 since n = p + ¢ and thus &} is also a primitive root of
unity (we have & # 1 for k=1,... ,n—1). Hence, we get all distinct roots of unity subtracted by 1 in the
nominator and the denominator, apart from a different order; they cancel out and we are left with 1.

If ged(p,) # 1 then ged(n,p) # 1 which means that £ = 1 for a k between 1 and n — 1. Hence the product
becomes zero.

Note that the corollary extends to circulants of the form C(a,... ,a,b,... b, a,... ,a) since it is possible to

transform them into C(a,... ,a,b,...,b) if we are successively swapping the first row down to the bottom.

Next, we will investigate circulants that are generated “vandermonde” like.

Corollary 17 Consider circulants of the form C(1,z,22,... ,2" 1), then we have the formula
C(l,z,2%, ..., 2" ") = (1 -2 (5.23)

Proof.

Perform the elementary column operations coly = col, —x - colp_1 for k =n,n—1,...,2 and observe that in

every step we subtract " from the corresponding main diagonal position while reducing the other column
elements to zero.

Obviously, this corollary allows the generalization to use g(z) - p(z)'(9 as generating functions instead of zi~"
for polynomial functions ¢ and p and a linear function [.

We will close with another special circulant generated by the function f(i) =a+ (i — 1)d.

Corollary 18 Consider the circulant C(a,a +d,a + 2d, ... ,a+ (n — 1)d). The following formula holds

Cla,a+d,a+2d,...,a+ (n—1)d) = (=1)""(dn)" *(a+ (n—-1)d/2). (5.24)

5.5. IMPLEMENTATION 113

Proof.

Denote C' = C(a,a+d, ... ,a+(n—1)d). If we add all the rows to the first row, it appears that na+n(n—1)d/2
is a factor. Removing this factor and performing the elementary column operations coly = coly — coly for
k=2,...,n we get

1 0 0 0 0
a+n-1)d —-(n-1)d —-(n—-2d --- —2d —d
a+(n—2)d d —-(n—-2)d --- —2d —d

C = (na+n(n—1)d/2) : : 9 : :
: : : K —2d —d
a+2d d 2d o (n=2d —-d

We observe that —d is a factor of all but the first column. Taking this out and expanding the first row, we
are left with

n—-1 n—-2 --- 2 1
-1 n-—-2 .- 2 1
C = (na+n(n—1)d/2)(-d)"! -2
: : : 2 1
-1 -2 .+ —n-21
n—1
Performing the operations rowy = rowy — rowy41 for k =1,... ,n — 1, we see that the determinant on the

right has the formula n"~2. The theorem follows.

5.5 Implementation

We address implementation issues of the Maple package SYMMETRIC for the discussed symmetric deter-
minants. Examples and further details can be found in the appendix or the on—line help pages.

5.5.1 General considerations

Determinant order The determinant order can be a positive integer or a symbolic expression of the form
n + d with integer d. However, in the centrosymmetric case we only allow integer orders.

How do we specify the determinant ? Since symmetric determinants are still very general and we
were only able to find formulas for special cases, we only allow quite restrictive specifications in the case of
centrosymmetric and axisymmetric determinants. The specification of Toeplitz determinants and Circulants
which have a more special structure can be more general. See the corresponding package functions for details.

Checking the determinant formula The computed formulas can be checked for integer orders (default
4) like in the preceding packages.

114 CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

5.5.2 The package functions

The SYMMETRIC package consists of the following functions:
AxisymmetricDet, AxisymmetricMatrix, CentrosymetricDet, CentrosymmetricMatrix,

Circulant, CirculantMatrix, ToeplitzDet, ToeplitzMatrix.

CentrosymmetricDet We omitted the derived formulas for symbolic order since they originated in non—
centrosymmetric determinants. Thus, we only allow integer orders and a restrictive generating function a(i)
and compute the determinant using the methods of the first section.

CentrosymmetricMatrix This function returns the specified centrosymmetric matrix of integer dimen-
sion.

AxisymmetricDet We only allow a function in i specifying the main diagonal and a function restF in i
and j specifying the remaining elements. If restF is constant we determine the arrow form and return its
formula. If restF is only a function in i or in j we determine the transformation into continuant form and
return the corresponding recurrence relation. It is not possible to obtain a formula for the most general case,
except if a;; = c(j — i) + d or a;; = c(i + j) + d (see (5.7)).

If the optional directive skew is given, we compute the square of the corresponding Pfaffian according to
(5.12) for integer orders. In the symbolic case, we return a recurrence relation if restF is only a function
in ¢ or only in j; For constant restF' we determine the corresponding 7-form determinant. If the case
a;j =c(i —j)+dora;; =c(i+j)+dis detected, we determine the corresponding frame form determinant
and call the appropriate FRAMEFORMS function.

AxisymmetricMatrix This function returns the specified axisymmetric (or skewaxisymmetric) matrix.
Dots “0” are used to abbreviate the symbolic case. Since Maple treats the dots as usual matrix entries, this
function should be used for illustrative purposes only for symbolic orders.

ToeplitzDet The specification of the Toeplitz determinant is a piecewise definition of the constant diago-
nals, i.e. a partition of the interval [-n+1..n-1]. If there is a two element band, we return the corresponding
formula according to (5.15) and Theorem 27. Otherwise we try to detect the cases where transformation
into Hessenberg form or into frame form is possible, determine the corresponding specifications and return
the formula resulting from the corresponding function calls.

ToeplitzMatrix This function returns the specified Toeplitz matrix. The same remarks as above apply.

Circulant The specification of a circulant is the piecewise specification of its first row (like in the FRAME-
FORMS package). The remaining rows are obtained by right shifts of the preceding rows. If the optional
directive leftshift is given, we have the other construction method and retransform it into the preceding using
(5.19). If the circulant is generated by a + id we return the formula (5.24). For a generating function of the
form ¢(z)p(z)"? we return formula (5.23). If we detect two element band form we use (5.21) to obtain a
formula.

In the general case we compute the general formula (5.20) involving roots of unity. Unfortunately Maple has
problems with the manipulation of these roots of unity so that it is not possible to compute a circulant of
odd order, we have to settle with the unevaluated general formula in that case.

CirculantMatrix This function returns the matrix of the specified circulant. The same remarks as above
apply

5.6. SUMMARY 115

5.6 Summary

In this chapter we discussed determinants of a number of symmetric matrix classes. Since symmetry still
yields a quite general form, we only managed to obtain determinant formulas of special cases of these
classes. We could derive formulas for a number of special cases of axisymmetric and skewaxisymmetric
determinants reducing them to simpler frame form or continuant form. The special structure of a zero axial
skew determinant was pointed out including the interesting relation to matching theory. In the case of
persymmetric determinants we were able to find formulas for several special cases of Toeplitz determinants
using elementary row and column operations to reduce them to simpler forms like frame form and sparse
Hessenberg form. We presented an old general determinant formula for circulants and picked out a few
special cases of [Met60] where it was possible to find simpler formulas.

The implemented Maple package SYMMETRIC allows the computation of most of the discussed formulas.
Using the package it is possible to obtain formulas for many of the exercises in linear algebra books like
[Bri83][Jan91|[SW89].

116 CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

Summary and Discussion

In this work we have studied a number of important matrix classes and tried to derive determinant formulas
for them. The results were integrated in the computer algebra system Maple by developing packages of
functions that enabled the specification of a matrix of a special class followed by the computation of its
specific determinant formula. Our aim was to theoretically obtain very general formulas such that it was
possible to automatically compute formulas for specified special cases. A large portion of the presented
theoretical results were taken from the excellent old book of Thomas Muir which was revised and enlarged
by William Metzler [Met60]. We tried to adapt their results to a more modern notation and elaborated the
proofs in a little more detail.

We were able to derive determinant formulas for matrices that have at most two nonzero rows and columns
and a nonzero maindiagonal. These so—called frame forms frequently arose in later chapters. Moreover,
some special geometric predicates can be formulated as frame form determinants for which we can find
formulas using the functions of our package. The major drawback of the FRAMEFORMS package is that
the resulting determinant formulas are sometimes far from cleverly simplified and possible “nice” formulas
can only be revealed after manual simplification. This is partly due to Maple’s inability to entirely simplify
an expression and partly due to the generalized computation. For example, special cases that are better
treated with another simpler method, are computed in the standard way leading to sometimes enormous
structural overhead.

The use of results in [Met60] made it possible to obtain nice formulas for special simple alternants expressing
them as a product of the difference product of their variables and the corresponding symmetric cofactor.
The symmetric cofactor could be represented using elementary symmetric functions or complete symmetric
functions and thus clarifying its structure. Unfortunately it was not possible to derive general explicit
formulas for polynomial alternants of higher orders. We also could only handle a very restricted class of
double alternants by reducing their elementary symmetric function determinant representation to frame
form.

In the case of tridiagonal and Hessenberg matrices we derived general recurrence formulas for the determinant
and extended some of the special results for continuants in [Met60] to Hessenberg determinants. The resulting
formulas were quite involved and required us to restrict the specification of Hessenberg matrices to total
diagonal generating functions in our implementation.

The investigation of symmetric matrices lead to a few generalizations of special axisymmetric determinants
and special Toeplitz determinants using row and column operations to reduce them to frame form or sim-
ple Hessenberg form. We also used results from [Met60] to obtain formulas for circulants and zero-axial
skewsymmetric determinants. The implementation made heavy use of our other packages and enabled us to
obtain determinant formulas for a lot of examples of special matrices in linear algebra text books (in fact
the generalization of many of them was motivated by the induction exercises in these books).

So far we always tried to prove a general theoretical formula for a matrix class and used the theoretical result
or method in our implementation. This had the effect that sometimes, especially for symmetric matrices, the
software package looked more like a library of determinant formulas. Moreover, the packages are restricted to
the covered matrix classes. It would be desirable to have a program that is also able to apply the techniques
used to theoretically derive determinant formulas to find new formulas for other matrix classes. This problem
is very tricky, however. How do we specify the determinants? Since our techniques can only be fruitful for

117

118 CHAPTER 5. DETERMINANTS OF SYMMETRIC MATRICES

specially structured matrices, we always have a different specification scheme in mind. How can we write
a program that does clever expansion and restructuring which was necessary to prove most of the derived
formulas? What we could do is to implement a number of strategies resulting from our own experiences, but
finding new formulas does not seem very promising apart from generalizations of frame forms for example.

In this work, we focused on the investigation of determinant formulas of only four important matrix classes.
It is unnecessary to note that there is a variety of other interesting classes of specially structured matrices
like Wronski matrices occurring in analysis or resultants occurring in algebra, just to name a few, which are
not covered here.

Appendix A

The Computer Algebra System Maple

In this chapter we will give a brief overview about the computer algebra system Maple. We will outline the
general organization of Maple following [Kal], describe some details of its programming language and the
package formalism. Moreover we will discuss, why Maple is especially suitable to implement our determinant
system.

More detailed informations can be found in [CGG'92] [Mon], the very good on-line documentation or on the
WWW (try for example the Maple page of the University of Waterloo at http://www.daisy.uwaterloo.ca/,
the commercial site at http://www.maplesoft.com/ or the excellent Maple V page at

http://SunSITE. informatik.rwth-aachen.de/maple/maplev.html) .

A.1 'What is Maple ?

Maple is a system for symbolic mathematical computation which has been under development at the Uni-
versity of Waterloo, Canada, since the end of 1980 (see [CGGG83] [CGGT92]). It has its own Algol68-like
programming language which enables the user to carry out complicated or repetitive operations and develop
their own extension of the system.

In fact most of Maple’s own procedures are written in this language. Only a small kernel part in written in
the base language C.

The primary design goals of the Maple system were

e compactness
e a powerful set of facilities for mathematical computation

e a good user interface (i.e. fairly natural computation)

The system is highly portable and is available for a large number of machines under various operating
systems. This level of portability has been achieved by having only one source code which is written by
means of a general purpose macro—processor, called Margay resembling C’s macro—processor but even more
powerful. The target language is C and the operating system must support a C compiler. The Margay
macros reflect machine dependencies, operating system dependencies from one C compiler to the next.

119

120 APPENDIX A. THE COMPUTER ALGEBRA SYSTEM MAPLE

A.1.1 Maple’s internal organization

We attempt to give a brief overview about the organization and the design of the Maple system.

The Maple language has a very simple syntax. The main program reads input, calls the parser and then the
statement evaluator for each complete statement. An internal data structure is created for each successful
production. Maple stops when it evaluates one of done , stop or quit.

A.1.1.1 Internal Functions

The functions which are part of Maple’s kernel, called internal functions, fall into four distinct groups.

Evaluators These split into the following functions and associated tasks:
evalstat for statement evaluation,

eval for expression evaluation,

evalname for name formation,

evalf for floating point arithmetic.

The parser calls only the function evalstat which usually initiates many interactions between the different
evaluators. Although users don’t have to call any evaluator directly, they may do so if the situation demands
it.

Algebraic functions These are identified with functions which are generally available to the user and are
called basic functions. Examples include:

diff for derivatives,

op for selecting parts of expressions,

divide for polynomial division,

coeff for finding coefficients of polynomials,
subs, subsop for substitution of expressions,

expand for finding expansion of expressions.

Algebraic service functions These functions cannot normally be called by the user directely. They are
at a level lower than the functions of the previous group and are used in their implementation. Examples
include the arithmetic packages, the basic simplifier, printing, the set operations package etc.

General service functions These are at the lowest level and may be called by any other function of the
system. They are not necessarily tied to algebraic computation but also provide services such as: storage
allocation, garbage collection, error-handlers, etc.

A.1.1.2 The Maple Library
Maple’s functions fall into four categories:
1. Built—in function which are internal to the system.

2. Library functions which are automatically loaded.

3. Miscellaneous library functions which are loaded by the user via the readlib function.

A.1. WHAT IS MAPLE ? 121

4. Packages of functions which are normally loaded via the with function.

The internal functions can and often do call upon functions which reside outside the kernel and are found in
the Maple library. For example expand does most of the work itself but when expanding a sum to a larger
power it will call the library function ‘expand/bigpow‘.

This feature has the following advantages:

e The system is very flexible since the library can be changed easily,
e Users can define their own handling functions so that personal tailoring is possible,

e The library source code can be read by all users. Using
interface(verboseproc=2); print(<function>);

it is possible to read the source code for a non—kernel procedure.

e The basic system which is always loaded can stay quite small even though the complex Maple system
is very large.

The call readlib(<procname>) causes Maple to load a file called <procname>.m which is located in
the Maple library directory. (Note that files with the .m extension are assumed by Maple to contain code
in fast loading internal format).

Packages allow the user to define an entire collection of functions with a simple command. After executing
with(<packagename>) we can use any of the package functions with their short name.

Maple packages load very quickly because the system just reads in a table of pointers where the code is to
be found. The actual code is not pulled into memory until it is required.

Packages are the heart of Maple, offering functions for all different areas of symbolic mathematic computation.
Package examples are: linalg, stats, logic, combinat etc.

The nice encapsulated form of functionality hidden in packages can also be programmed by the user. We
will see later how this works.

A.1.1.3 Internal Representation of Data Types

All internal data structures used by Maple are built by the parser and some internal functions. These
structures have the same general format.

| header | dataq | datas | | datay, | |

The header encodes the following information:

15 bits giving the length of the structure,

6 bits giving its type,

1 bit indicating its simplification status,

7 bits giving information to the garbage collector.

122 APPENDIX A. THE COMPUTER ALGEBRA SYSTEM MAPLE

The data items are usually pointers to other internal structures.

The length of a structure does not change and structures are never changed during execution since it is not
known which other structures point to them. The normal method of modifying a structure is by making a
copy of it and modifying that. Otherwise the only safe modifications are carried out by the simplifier which
produces the same value in simpler form. The garbage collector identifies and removes unused structures.

The internal representation of all data structures is by means of dynamic arrays (vectors). This means that
each (top level) component part of the data structure an be accessed in constant time and this makes various
operations faster than they would be if linked lists were used. Dynamic vectors are also more economical
than linked lists in terms of space requirements.

A.1.2 The Maple programming language

We try to give a short description about programming in Maple. Details can be found in [Mon| and [Red94]
for example.

Basic language features As mentioned above, Maple has its own programming language. Most of its
constructs are borrowed from other languages, e.g. the repetition and selection statements come from
Algol68. The language also has a functional flavour in that every procedure returns a result.

Maple is not strongly typed like C or Pascal. No declarations are required (thus Maple is more like Lisp and
Basic in this aspect). However, types exist. Type checking is done at run time and must be programmed
explicitly.

Maple is interactive and the programming language is interpreted. Maple is not suitable for running numer-
ically intensive programs because of the interpreter overhead.

The heart of Maple programming is writing procedures that can make use of all Maple functions. A typical
procedure definition looks like this:

proc(<name sequence>)
[local <name sequence>;]
[options <name sequence>;]
<statement sequence>
end;
Example: squaresum:=proc(x,y) x*x+y*y end:
Calling this defined procedure would look like that: squaresum(2,3); with result 13.

Each procedure is given a (possibly empty) parameter list. The parameter passing mechanism can be
described as ‘call by evaluated name’. All actual parameters are first evaluated and then each formal
parameter is replaced by its corresponding actual parameter (and is not evaluated again). If we want to pass
a value back via a parameter we have to make sure that at the time of the call the parameter has no value
assigned to it.

It is possible to declare local arguments of a procedure. They can only be seen within this procedure (and
not in possible nested procedures). However, it is not necessary to declare any variable used in a procedure.
If declaration is omitted, the variable is assumed to be global.

Local variables are only given one level of evaluation, as opposed to global ones which are given fully recursive
evaluation. This is for efficiency reasons.

Parameter passing and scope rules are somewhat unusual and can cause nasty surprises if one is not aware
of them.

A very useful facility in Maple procedures is the availability of various options, the most important being
the option remember. This causes Maple to store the results of calls to a particular procedure so that in

A.1. WHAT IS MAPLE ? 123

future invocations they will just be looked up rather than recomputed. A good example is the computation
of the Fibonacci numbers. The clearest code is obtained by implementing the recurrence which defines them.
Unfortunately this is incredibly inefficient. The use of the remember option allows us to retain the clear
code and compute the numbers efficiently.

Data types in Maple Each Maple expression is represented internally by a tree each of its vertices is
some data type. The function whattype returns the type of an expression while the function type can be
used to check that an expression has a given type.

The function op can be used to find the components of a given type (i.e the expressions at the vertices
which are joined to the root of the expression tree) while the function nops returns the number of such
components.

Data structures More complicated programs involve manipulating and storing data. The representation
of our data affects the algorithms that we write and how fast our programs will run. Maple offers a good set
of data structures including lists (or vectors), sets, tables (or hash tables) and arrays.

Debugging facilities in Maple Writing software is bound to yield errors at some point. Since it is also
possible to write large programs in Maple, there is a need of debugging facilities. Fortunately, Maple offers
various methods:

The mint program This program is separate of the Maple system and used outside of Maple itself by a
command such as mint < file >.

Mint will then produce a report on the code including likely errors. The amount of reported information
can be controlled by a flag.

The printlevel facility Each statement which is executed in Maple has a certain level associated with
it. Results of statements whose levels are no t higher than the global variable printlevel (default value is
2) are printed out during evaluation. Setting high values for printlevel leads to more information printed
on the screen and can be very useful for debugging activities.

Tracing specific procedures Selective information can be obtained by using the built—in function trace
or debug which can take one or more procedure names as arguments. This causes entry points (with
argument values) and exit points (with result values) to be displayed as well as information on statements
executed within the relevant procedures.

A.1.3 Building your own MAPLE package

Assume you have written a certain number of procedures concerning a specific topic and you would like
to let others make use of your code. The most elegant way to do this is providing a package with on-line
documentation and other advantages like the existing Maple packages. Unfortunately this is not (or just
vaguely) described in the existing documentation.

So how do we proceed?

Suppose we have procedures £1, £2, £3 and want to combine them in a package called mypack .

1. Create an empty archive in the directory mylibdir using the Maple Archive Manager: march -c
mylibdir 10 (the number 10 means that MARCH creates space for approximately 10 entries).

124

APPENDIX A. THE COMPUTER ALGEBRA SYSTEM MAPLE

2. Create an index for the package: mypack[f1] :=’readlib(‘mypack/f1¢)’:

mypack[£f2] :=’readlib(‘mypack/f2¢)’: mypack[fl1]:=’readlib(‘mypack/£3¢)’: .

The functions £1, £f2, f£3 arereadlib defined such that Maple does not always load the whole package
when we just want to use a single function of it. Suppose that this index code and internal functions
(replace internal_f with ‘mypack/internal_f*¢ for each internal function and simplify access to the
internal functions using macro (internal_f = ‘mypack/internal_f‘);) that are used by different
package functions are located in mylibdir/src/mypack.mpl. We will open a new Maple session, read
in the code and save it in Maple’s internal format with > save ‘mylibdir/mypack.m‘;.

Note that it is necessary to restart Maple before and after doing this since save ‘<filename>.m¢; saves
all defined names of the session in internal format. Using save ’mypack’,’intfl’,’intf2’,...,
‘<filename>.m‘; would avoid the restart but be rather cumbersome having many internal files.

Now we have to save the package procedures separately. We assume that the code of each package
function f_k with corresponding internal functions that are not used by other package functions re-
sides in mylibdir/src/mypack_f_k.mpl .Note that f_k:=proc ... end:has to be substituted with
‘mypack/f_k‘:=proc ... end: according to the package table. Proceed analogously for all internal
functions. Save the code for each package procedure : >save ‘mylibdir/mypack/f_k.m‘; and restart.

It remains to add the .m files to the archive: march -a mylibdir mypack.m mypack and march -a
mylibdir mypack/f_k.m mypack/f_k for each package function.

The package is created but we have to tell Maple that there is a new directory to search for packages.
We simply set libname:=‘mydirlib‘,libname; and add it to our \$HOME/.mapleinit file. When
we start Maple from now on we can use our functions after with(mypack); or single functions after
with(mypack,_k); . It is often desirable that package functions can be individually accessed with the
command > mypack[f_k] (args); like in all packages supplied with Maple. To permit this capability
we add mypack:=’readlib(’mypack’)’: to our \$HOME/.mapleinit file .

On-line documentation is indispensable even if no other persons will ever use the package. It is sug-
gested to organize help pages like Maple does: FUNCTION, CALLING SEQUENCE, PARAMETERS,
DESCRIPTION and last but not least EXAMPLES. Maple V R4 simplifies our task. We simply create
a new worksheet for every package function, “construct” the corresponding help page (possibly using
hyperlinks to refer to other functions) and save them in mylibdir/mypack/help as .mws files. Finally,
we create our help database using Maple’s makehelp facility:

> readlib(makehelp):

> makehelp(‘mypack®, ‘mylibdir/help/mypackhelp.mws‘, ‘mylibdir‘):

> makehelp(‘mypack,f1¢, ‘mylibdir/help/fihelp.mus‘, ‘mylibdir‘):

> ...
Help on our package can now be obtained using > ? mypack[f_k]. Alternatively, we can use the
Maple Save to Database option (in the Help menue). Maple asks us for a help topic (put in mypack, f),

parent name (put in mypack), aliases (put in f,mypack[f])and a directory of a help database (put in
mylibdir) to save the current worksheet in as a Maple help file.

Surprisingly 7f_k does not work even after with(mypack): for both methods (due to a strange Maple
policy).

This is the complete proceeding to install a package. If we want to change a package we have to save the
modified source part as a .m file again and update the package with march -u mylibdir <newsource>
<newindex>.

A.2. WHY MAPLE ? 125

A.2 Why MAPLE ?

Since we are interested in determinant formulas of specially structured matrices of symbolic order with
generally symbolic entries (such as polynomials) it is clear that we need a facility for symbolic mathematical
computation.

This rules out the standard programming languages like C/C++ which is not disadvantageous because we
don’t have to deal with the issue of computation speed.

Thus we are left with computer algebra (CA) systems which all provide symbolic computation. There is quite
a big number of CA systems available (like Scratchpad II/AXIOM, Mathematica, Maple, muMath/Derive,
SAC/ALDES, Reduce etc.) with various large user areas (unmentioned various local CA at universities).
Maple certainly is among the most well known CA systems. Its platform independence, ease of use and
possibilities to extend the system are reasons for the popularity among different user communities.

Moreover, as we have seen, Maple offers all the needed symbolic computation methods as well as an easy
programming language and the possibility to package our code nicely, which explains our choice.

All our code is developed using Maple V R4 . The code is divided in packages with on-line help and can be
added to the Maple’s share library. The packages including source code and help pages is available at:

http://www.cs.uni-sb.de/users/mdenny/Bewohner/mark/Determinant.html

126 APPENDIX A. THE COMPUTER ALGEBRA SYSTEM MAPLE

Appendix B

Tutorial for the implemented Maple
packages

This part contains the complete tutorial of the implemented packages. It is identical to the on-line docu-
mentation included in the packages. The help pages are organized like other Maple help pages.

B.1

The FRAMEFORMS package

This is the tutorial to the FRAMEFORMS package which is also available as on-line documentation.

Help For: Introduction to the FRAMEFORMS package

Calling Sequence:

function(args)
FRAMEFORMS|function](args)

Description:

To use a FRAMEFORMS function, either define that function alone using the command with(FRAME-
FORMS, function), or define all FRAMEFORMS functions using the command with(FRAMEFORMS).
Alternatively, invoke the function using the long form FRAMEFORMS[function]. This long form
notation is necessary whenever there is a conflict between a package function name and another function
used in the same session.

The functions available are: FrameformMatrix, GetBorderForm, Form7, Arrow, Nform, DBform,
Rform, Frameform.

This package provides a number of functions computing the determinant of matrices that have at most
two rows and columns as well as at most two neighbouring central diagonals nonzero. It is possible to
derive symbolic order determinant formulas for most of these matrices. Integer order evaluation is also
possible.

For more information on a particular function, see FRAMEFORMS|[function].

127

128 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

See Also: FRAMEFORMS, HESSENBERGandCONTINUANT, SYMMETRIC.

Help For: Specification of a FRAMEFORMS matrix and the FrameformMatrix
function

Description:

The only nonzero elements of a FRAMEFORMS matrix of order n may appear in at most two rows and
columns, in the main diagonal, the 1st upper and lower sidediagonals or the corresponding counter diagonals.
We allow at most two neighbouring diagonals to be nonzero. In case of two diagonals we require bordering
nonzero rows and columns.

Specification:

The specification of such a matrix is a list of two element lists (each defining the location and a corresponding
piecewise function in i):

e specL = [[location 1, fL 1], ..., [location_k ,fL k]|
o location = row[k] | col[k] | diag[0] | diag[1] | diag[-1] | cdiag[0] | cdiag[1] | cdiag[-1] , 1 <= k <= n (k posint)

e fL=[[p_l.p 2,f 1],[p_24+1.p_3,f 2],..,[p_k+1l.p_(k+1),f k]]

Restrictions:

e Interval bounds p_j integer or of the form n-q, q integer with 1 <=p 1 <=p_ (k+1) <=n.
e Note: for diag[1],diag|-1],cdiag[1],cdiag[-1] we need p_(k+1)<=n-1).

e f j function in i (otherwise constant) defined on the intervall [p_j.p_(k+1)] without roots in that
interval.

e Ifp 1>1orp (j+1)<n the gaps are filled out with zeroes such that no clashes in the corners occur.This
is only applicable in the case of standard frame form matrices,

Short Cuts:

o diag instead of diag|0] and cdiag instead of cdiag|0].
e p_jinstead of p_j..p_j for one element intervals.
o finstead of [[1..n, f]].

o [p l.p 2, f]instead of [[p_1.p 2,f]].

Function: FRAMEFORMS|[FrameformMatrix| - frame form matrix

Calling Sequence:

FrameformMatrix(n,specL)

B.1. THE FRAMEFORMS PACKAGE 129
Parameters:

n - matrix order (as above)
specL - specification of the frame form matrix (as above)

Examples:
> with(FRAMEFORMS) :

> FrameformMatrix(n,[[row[1],a], [row[n],i] ,[cdiag,[[2..n-1,1]1] 1);

aaaoooa
00 000 1T O0
00001 0O
0 00 o 0 0O
00 o 00 0 O
0o 000 0O
1 2 3 o o o n

> FrameformMatrix(5,[[row[1],[[1..2,x],[3..5,y]1] 1,[diag[-1],-1],[diag,[2..5,al] 1)}

r vy oy
-1 a 0 0
0 -1 a 0 O
0 0 -1 a O

> FrameformMatrix(n+1, [[row[1],al[i-1]]1, [cdiag,[2..n+1,x]], [cdiag[-1],-111);

(ag a, Gz 0 0 O Qn_1 an-
0 0 000 0 & -1
0 0 000 « -1 0
0 0 000 -1 0 0
0 0 0 oo 0 0 0
0 0 o 00 0 0 0
0 2z 000 0 0 0

2 -1 000 0 0 0|

> FrameformMatrix(n, [[row([3],3], [diag,i], [col[n -1],[[1..3,3],[4..n,n-1]11],
[col[2],111);

130 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

0 0 3
3

o O
(en]
o

0o o 3

n—1

ot = W N —
oS O O

n—1

o O O

0

o O O O w o O

QS

0
0 0 0
n—1 0
0 n—1 n

O O O O O O o w o —
Q

O O O O O O O w o o

O O O o o O = W O O

o O O O O ot O w o o

o O O O Q

o O O

o

> FrameformMatrix(n,[[col[n],[[1,x],[2..n-2,y1]1 1 ,[row[1],[[3..n-1,1+x]] 1],
[diag[-11,[[1..5,q]1,[6..n-1,a[i111 1 1);

-0 0 142 1+z 142z 142 1+2 0o o o 14+2 1l+z x-
g O 0 0 0 0 0 0 0 0 0 0 Y
0 ¢ 0 0 0 0 0 0 0 0 0 0 Y
0 0 q 0 0 0 0 0 0 0 0 0 Y
0 0 0 q 0 0 0 0 0 0 0 0 Y
0 0 0 0 q 0 0 0 0 0 0 0 Y
0 0 0 0 0 ag 0 0 0 0 0 0 Y
0 0 0 0 0 0 az 0 0 O 0 0 0
0 0 0 0 0 0 0 o 0 0 0 0 0
0 0 0 0 0 0 0 0 o 0 0 0 0
0 0 0 0 0 0 0 0 0 o 0 0 Y
0 0 0 0 0 0 0 0 0 0 apno 0 0

0 0 0 0 0 0 0 0 0 0 0 Gn-1 O

See Also: GetBorderForm

Function: FRAMEFORMS|GetBorderForm]| - transforms a general frame form
matrix into border form such that the determinants are equivalent

Calling Sequence:

GetBorderForm(n, specL)
GetBorderForm(n, specL, print)

B.1. THE FRAMEFORMS PACKAGE 131
Parameters:
n - order of determinant (positive integer or symbolic expression of the form n+d,d integer)
specL. - specification of the general frame form matrix (see FrameformMatrix for details)
print - optional directive
Description:

e The function GetBorderForm transformes the specified general frame form matrix into border from, i.e.
nonzero rows or columns will be swapped to the matrix borders (updating the remaining matrix). The
tranformation is only possible when we have only one nonzero diagonal, otherwise an error will be
returned.

e A possible signfactor occuring during the transformation is multiplied to the first row of the resulting
matrix.

e Note that the output matrix should not be used in further computations for symbolic orders, since
Maple treats the abbreviating "dots" as normal matrix entries.

e The directive print (optional) prints the specified general frame form matrix before returning the
transformed matrix.

e The command with(FRAMEFORMS) or with(FRAMEFORMS, GetBorderForm) allows the abbrevi-
ated form of this command after setting the libname appropriately.

Examples:
> with(FRAMEFORMS) :
> GetBorderForm(n, [[row[3],3] , [row[n-1],n-1] ,[diag,i]],print);

Matriz

1 0 0o 0 000 0 0 |
0 2 0 0 0 0O 0 0
3 3 3 3 0o o o 3 3
0 0 0 4 0 00 0 0
0 0 0 0 o 0 0 0 0
0 0 0 0 0 o O 0 0
0 0 0 0 0 0 o 0 0
n—1 n-1 n-1 n—-1 o o o n—1 n-1

L 0 0 0 0 0 0O 0 no |

Transformed Matrix :

132 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

3 3 3 3 3 ooo 3 3 3 |

0 2 0 0 0 0 0O 0 0 0

0 0 1 0 0 0 0O 0 0 0

0 0 0 4 0 0 00 0 0 0

0 0 0 0 5 0 00 0 0 0

0 0 0 0 0 o 0 0 0 0 0

0 0 0 0 0 0 o O 0 0 0

0 0 0 0 0 0 0 o 0 0 0

0 0 0 0 0 0 0 0 n-2 0 0

0 0 0 0 0 0 0O 0 n 0
n—l n—1 n—-1 n—-1 n—-1 o o o n—1 n-1 n—l

> GetBorderForm(n, [[row[3],3],[col[n-1],i],[dia g,i]],print);

Matriz :
(1000000 1 0]
0200000 2 0
333 3 0 o0 o 3 3
0004000 4 0
0000000 o 0
00000060 o 0
0000000 o O
0000000 n-120
(0000000 n n|

Transformed Matriz :

(3 333 3 o o o 3 3 3-
2 2 000000 0 0 0
1 0100000 0 0 0
4 0 040000 0 0 0
3 0 005 000 0 0 0
o 0000 o 00 0 0 0
0 00000 o O 0 0 0
0 0 000 0 O0 o 0 0 0
n—2 000 0000 n=-2200
n—1 0 0 0 0 0 0 O 0 0 0
L n 0 000 O0O0O 0 0 n |

B.1. THE FRAMEFORMS PACKAGE 133

> GetBorderForm(8,[[row[2],[[1..1,d],[2..2,a],[3..3,b],[4..4,d4],[5..5,c],[6..8,d]1]1 1,
[row[5],[[1..2,e],[3..3,b],[4..4,e],[5..5,a],[6..8,el] 1,[co1(3],[[1..2,b],[3..3,al,
[4..8,b]] 1,[col[5],[[1..4,c],[5..5,a],[6..8,c]] 1 , [diag,al] ,print);

Matriz
(@ 00b 0 c 00 0]
d a b dc d d d
0 0a 0 ¢c 00O
0 0 bac 000
e e b e a e e e
0 0b 0O ¢ a 00
0 0b 0O ¢ 0 a O
00b0000a

Transformed Matrix :

[b -d —a -d -d -d -d —c|
b a 0 O 0 O 0 ¢
a 0 O O 0 0 0 ¢
b 0 0 a 0 0 0 ¢
b 0 0 0 a 0 0 ¢
b O 0 O 0 a 0 ¢
b 0 0 0 0 0 a ¢
b e e e e e e aJ

See Also: FRAMEFORMS

Function: FRAMEFORMS|[Form?7] - determinant of an 7 - form matrix

Calling Sequence:

Form7(n, specL)

n, specL, print)

n, specL, check) or Form7(n, specL, check[k]) (k positive integer)

Form7(n, specL, print, check) or Form7(n, specL, print, check[k]) (k positive integer)

Parameters:

n - order of determinant (positive integer or symbolic expression of the form n+d,d
integer)

specL - specification of the 7 form (see FrameformMatrix for details)
A 7-form is a matrix with only one bordering row or column together with two
appropriate neighbouring central diagonals nonzero.

print - optional display directive

check - optional checking directive

check[k] - optional checking directive (k positive integer)

134 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES
Description:

e The function Form7 computes a formula for the determinant of the specified 7-form matrix. If necessary,
the valid range for the formula is displayed.

e The optional directive check or check[k] , k positive integer, enables the checking mechanism: The
determinant of a integer order matrix is computed using the standard det function and is compared
with the value of the output formula for the same order. Default for the check order is 4 and can be
set to an arbitrarily large value using check|k]. If the output formula is only valid for higher orders, the
check order is automatically adapted. If the order n is an integer, the check value is set to n.

e The directive print (optional) prints the specified 7-form matrix before returning the determinant
formula.

e The command with(FRAMEFORMS) or with(FRAMEFORMS, Form?7) allows the abbreviated form
of this command after setting the libname appropriately.

Examples:
> with(FRAMEFORMS) :
> Form7(n+1,[[rowl[1]l,ali-111,[diag,[2..n+1,x]1],[diag[-1],-1] 1,print,check);

Matriz :
(Qg ajq as O O O Qp-—1 (07%%
-1 =z 0O 0 0 O 0 0
0O -1 =z 0 0 O 0 0
0 0 -1 o 0 O 0 0
0 0 0 o o O 0 0
0 0 0 0 o o 0 0
0 0 0 0 0 o T 0
L 0 0 0O 0 0 0 -1 T

Determinant :
n >= 4
n+1

Z a; 1 x(n+17l7)

I =1

> Form7(n,[[col[1],[[2..3,a],[4..n-3,b],[n-2..n,c]]],[diag,1], [diag[1],-1]],
print,check);

Matriz :

B.1. THE FRAMEFORMS PACKAGE

(1 -1 0 0 00 000 0 0 0]
¢« 1 -1 0 0 0 000 0 0 0
« 0 1 -1 00 000 0 0 0
b 0 0 1 -1 0 000 0 0 0
b 0 0 0 1 -1000 0 0 0
6 0 0 0 0 o 000 0O 0 0
6o 0 0 0 0 0 o000 0 0 0
o 0 0 0 0 0 0o0oo0o 0 0 0
b 0 0 0 0 0 001 -1 0 0
c 0 0 0 0 0 000 1 -1 0
c 0 0 0 00 000 0 1 -1
¢ 0 0 0 00 000 0 0 1]

Determinant :

n >= §

2a—Tb+1+bn+(-1)2Mb4+3(-1)CM¢

See Also: FRAMEFORMS

Function: FRAMEFORMS|[Arrow] - determinant of an arrow shaped matrix
Calling Sequence:

Arrow(n, specL)

Arrow(n, specL, print)

Arrow(n, specL, check) or Arrow(n, specL, check[k])

Arrow(n, specL, print, check) or Arrow(n, specL, print, check[k])

Parameters:
n - order of determinant (positive integer or symbolic expression of the form n+d,d
integer)
specL - specification of the arrow matrix (see FrameformMatrix for details)
An arrow form is a matrix with only one nonzero row and adjacent, column together
with at most two appropriate neighbouring central diagonals nonzero.
print - optional display directive
check - optional checking directive
check[k] - optional checking directive (k positive integer)
Description:

e The function Arrow computes a formula for the determinant of the specified arrow shaped matrix.

If necessary, the valid range for the formula is displayed.

135

136 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

e The optional directive check or check[k] , k positive integer, enables the checking mechanism: The
determinant of an integer order matrix is computed using the standard det function and is compared
with the value of the output formula for the same order. Default for the check order is 4 and can be
set to an arbitrarily large value using check[k]. If the output formula is only valid for higher orders, the
check order is automatically adapted. If the order n is an integer, the check value is set to n.

e The directive print (optional) prints the specified arrow shaped matrix before returning the determinant

formula.

e The command with(FRAMEFORMS) or with(FRAMEFORMS, Arrow) allows the abbreviated form

of this command.

Examples:
> with(FRAMEFORMS) :

> Arrow(n,[[row[1],al,[col[1],[2..n,b]],[diag,[2..n,1]]],print,check);

> Arrow(n,[[row[n],alil], [col[1],[1..n-1,2]1],[cdiag[-1],[1..n-2,i]]],print,check);

Matriz -
(a a a o o o
b 1.0 0 0 O
b 01 0 0 O
o 00 o 00
o 00 0 o O
o 00 0 0 o
500000
Determinant :

n >= 2

a—ban+ba

Matriz

(2 0 0 00 o0
2 0 0 00 0
o 0 0 00 0
o 0 0 0 0 0
o 0 0 0 o 0
2 0 0 o 0 0
2 0 n—-2 00 O
a1 as 0 0 0 Gp_2
_ Determinant :

n >= 3

2 (_1)(1+ﬁoor(1/2 n+1/2)) F(Tl _ 1) as

= O O O O O Q

O O O O N O O

Gp—1

o O O O O = O

an

B.1. THE FRAMEFORMS PACKAGE

> simplify(Arrow(n,[[row[1],1],[col[n],[2..n,1]], [cdiag,[2..n,x]],[cdiag[-1],
[2..n-1,-1]1]],print,check[7]) ,assume=integer);

Matriz -

[1 1 1 o o o 1 1 1
0 0 000 0 =z 1
0O 0 000 2 -11
0 0 00 o -1 0 o
0 0 0 o o 0 0 o
0 0 oo 0 0 0 o
0O z o 00 0 0 1
xr -1 0 0 0 0 0 1

) Determinant :)

n >= 3

(_1)ﬁ00r(1/2 n) (_x(n+1) 4" — x(nfl) +2"n — x(nfl) n+ 1)
(z —1)?
> Arrow(n,[[row[3],3],[col[n-1],i], [diag,i]],print,check);
g p

Matriz -
(1000000 1 0]
0200000 2 0
33 3 3 o o o 3 3
0 004000 4 0
0000 o 0O 0 0
00000 o000 0 0
0000 O0O0 o 0 0
0000 O0O0O0Mn-1020
0000000 n n
) Determinant :)
n >= 7
I'(n+1)

See Also: FRAMEFORMS

Function: FRAMEFORMS|Nform]| - determinant of a N shaped matrix

Calling Sequence:

Nform(n, specL)
Nform(n, specL, print)

137

138 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

Nform(n, specL, check)
Nform(n, specL, print, check)

Parameters:
n - order of determinant (positive integer or symbolic expression of the form n+d,d
integer)
specL - specification of the N shaped matrix (see FrameformMatrix for details)
An N form is a matrix with only two rows or columns together with at most two
appropriate neighbouring central diagonals nonzero.
print - optional display directive
check - optional checking directive
check[k] - optional checking directive (k positive integer)
Description:

e The function Nform computes a formula for the determinant of the given N shaped matrix. If necessary,

the valid range for the formula is displayed.

e The optional directive check or check[k] , k positive integer, enables the checking mechanism: The
determinant of an integer order matrix is computed using the standard det function and is compared
with the value of the output formula for the same order. Default for the check order is 4 and can be
set to an arbitrarily large value using check[k]. If the output formula is only valid for higher orders, the
check order is automatically adapted. If the order n is an integer, the check value is set to n.

e The directive print (optional) prints the specified N shaped matrix before returning the determinant

formula.

e The command with(FRAMEFORMS, Nform) or with(FRAMEFORMS) allows the abbreviated form

of this command after setting the libname appropriately.

Examples:
> with(FRAMEFORMS) :

> Nform(n,[[coll1],alill, [col[n],b[n-il], [diag,[2..n-1,i]] 1,print,check);

a
a3

as

ap—1

Gn

Matriz
00000
2 00 00
03 000
00 o 00
000 ooO
0 00 0 o
000 0O
000 00

Determinant :

n >= 3

—(—a1 b(] + bn,1 an) F(n)

bn—l
bn—2

bn73

by
bo

B.1. THE FRAMEFORMS PACKAGE 139

> simplify(Nform(n,[[row[1],1],[row[n],i],[diag,[2..n-1,1]],[diag[-1],[1..n-2,-1]]],
print,check) ,assume=integer);

Matriz :
1 1 o o o 1 1 1
-1 1 0 0 0 0 0 0
0 -1 o 0 O 0 0 0
0 0 o o O 0 0 0
0 0 0 o o 0 0 0
0 0 0 0 o 1 0 0
0 0 00 0 -1 1 0
1 2 o o o n—2 n—-1 n
Determinant :
n >= 8
1 1
)

> Nform(n,[[row[3],al, [row[n-1],x[i]], [diag,[[1 ..3,al,[4..n,x[i]1]1]1]],print,check);

Matriz :
(w0 0 0 0000 0 0|
0 a 0 0 0000 0 0
a a a a a (0] (0] o0 a a
0 0 0 2 0 000 0 0
0 0 0 0 @ 000 0 0
0 0 0 0 0 000 0 0
0 0 0 0 0000 0 0
0 0 0 0 0000 0 0
X1 Xy X3 Ty XTs O O O Tp_i Tn
(00 0 0 0000 0 =)

Determinant :
n >= 7
—34+n

(axp_1 —x30)a®(H Ty 41) Ty
1_=3

140 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

See Also: FRAMEFORMS

Function: FRAMEFORMS|Rform]| - determinant of an R shaped matrix
Calling Sequence:

Rform(n, specL)

Rform(n, specL, print)

Rform(n, specL, check) or Rform(n, specL, check[k]) (k positive integer)

Rform(n, specL, print, check) or Rform(n, specL, print, check[k]) (k positive integer)

Parameters:
n - order of determinant (positive integer or symbolic expression of the form n+d,d
integer)
specL - specification of the R shaped matrix (see FrameformMatrix for details)

An R form is a matrix with two nonzero columns and one nonzero row (or vice versa)
together with at most two appropriate neighbouring central diagonals nonzero.
print - optional display directive

check - optional checking directive
check[k] - optional checking directive (k positive integer)
Description:

e The function Rform computes a formula for the determinant of the given R shaped matrix. If necessary,
the valid range for the formula is displayed.

e Unfortunately, the function doesn’t always work correctly in the case of symbolic order and two diag-
onals if the diagonal generating functions are functions in "i" (it works however, if "i" only appears as
index like in f[i]). This is probably due to Maple’s attempt finding closed forms for complicated sums
and products.

e The optional directive check or check[k] , k positive integer, enables the checking mechanism: The
determinant of a integer order matrix is computed using the standard det function and is compared
with the value of the output formula for the same order. Default for the check order is 4 and can be
set to an arbitrarily large value using check[k]. If the output formula is only valid for higher orders, the
check order is automatically adapted. If the order n is an integer, the check value is set to n.

e The directive print (optional) prints the specified R shaped matrix before returning the determinant
formula.

e The command with(FRAMEFORMS, Rform) or with(FRAMEFORMS) allows the abbreviated form
of this command after setting the libname appropriately.

Examples:
> with(FRAMEFORMS) :

> Rform(n,[[row[1],1],[col[1],[2..n,a]]l,[col[n],[2..n,b[i]]],[diag,[2..n-1,c]]]
,print,check) ;

Matriz :

B.1.

>

>

THE FRAMEFORMS PACKAGE

n—1
by, (c(”_Q) —ac T3t 42 ac(_3+”)) —a (c(”_Q) — (=34n) (Z b))

Rform(n, [[col[1],alil], [row[1],[2..n,b[i]]], [row[n],[2..n,1]], [diag[-1],
[2..n-2,1]]],print,check[9]);

a1
a2

as

Ap—2

Gp—1

Qp

=
V)

_ o O O O O N O

o O O O o O

S
w

_ o O O O W O O

1 o o o1 1
000 0 0 b
c 00 0 0 b3
0 o 000 o
0 0 o 0O 0
000 o0O 0
0 00 0 ¢ by
000 0 0 by |
Determinant :

n >= 4

Matriz :

o O O O

o O O O
(en]
)
_ o O O O O O O

Determinant :

n >= §

—3+n

o)
=
3
|
V)
=
3
|
—

(=
S

_ o O O O O O O

(=)™ (b1 = ba) ([T (n=1_=1)ay

Rform(n, [[row[1],1], [col[1],i], [col[n-1],1],[cdiag[1],il],print,check);

I_=1

Matriz :

I_=2

141

142

APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

[1 1 o o o1 1 1
2 000 210
0 00 o 0 o O
0 0 o 00 ooO
0 o 00 0 o O
n—1 000 0 1 0
" 000 010 |
Determinant :
n >= 4
—3+4n

_(_1)ﬁoor(1/2 n) (_1)n(H (n _ l_ _ 1))

I_=1

See Also: FRAMEFORMS, FRAMEFORMS[Arrow]

Function: FRAMEFORMS|[DBform]| - determinant of a DB-matrix

Calling Sequence:

DBform(n, specL)
DBform(n, specL, print)
DBform(n, specL, check) or DBform(n, specL, check[k]) (k positive integer)
DBform(n, specL, print, check) or DBform(n, specL, print, check[k]) (k positive integer)
Parameters:
n - order of determinant (positive integer or symbolic expression of the form n+d,d
integer)
specL - specification of the DB form (see FrameformMatrix for details)
An DB form is a matrix with only the bordering rows and columns together with a
diagonal non-zero.
print - optional display directive
check - optional checking directive
check[k] - optional checking directive (k positive integer)
Description:

e The function DBform computes a formula for the determinant of the given DB shaped matrix.
If necessary, the valid range for the formula is displayed.

No formula can be obtained in the case of two neighbouring diagonals or if both rows and columns
don’t contain a constant part of symbolic length (i.e. dependent on n).

e The directive print (optional) prints the specified DB shaped matrix before returning the determinant

formula.

B.1. THE FRAMEFORMS PACKAGE

e The optional directive check or check[k] , k positive integer, enables the checking mechanism: The
determinant of a finite order matrix is computed using the standart det function and is compared with
the value of the output formula for the same order. Default for the check order is 4 and can be set to
an arbitrarily large value using check[k]|. If the output formula is only valid for higher orders, the check
order is automatically adapted. If the order n is an integer, the check value is set to n.

e The command with(FRAMEFORMS, DBform) or with(FRAMEFORMS) allows the abbreviated form

of this command after setting libname appropriately.

Examples:

> with(FRAMEFORMS) :

> DBform(n,[[row[1],al, [row[n],b[il],[col[1],[2..n-1,11],[col[n],[2..n-1,x[1]]],
[diag[-1],[2..n-2,3]]],print,check[9]);

Matriz :
a a a o 0 o a a a
1 0 0 0 0 O 0 0 To
1 3 0 0 0 0 0 0 T3
o 0 3 0 0 O 0 0 0
o 0 0 o 0 O 0 0 0
o 0 0 0 o O 0 0 0
1 0 0 0 0 o 0 0 Ty o
1 0 0 0 0 O 3 0 Tp_1
bl bz b3 o 0 O bn_g bn—l bn
Determinant :
n >= 4§
(=1)"*2) 2y (b, 4 (33%— isnan) —a(ignbl - —3“ Z b)
27 81 27 -
1
_(_1\(n-1) ~ an _ — an _ —3nq_ —37g
(1) (a (273 bn 3 Z bt @nt1-1)) —ba-1(5-3"a 3

> DBform(n,[[row[1],i], [row[n],al,[col[1],[[2,2],[3..n-2,1],[n-1,y]11],[col[n],
[2..n-1,x]],[diag,[2..n-1,k]]],print,check([9]);

Matriz :

Z Tp41— I)

144 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

[1 2 3 4 0 o o n—-2 n—-1 n 1
z k0 0 0 00 0 0 x
1 0 £k 00 0O 0 0 x
10 0 K 00O 0 0 x
o 00 0 o 00 0 0 0
o 00 0 0 o O 0 0 0
o 00 0 0 0 o 0 0 0
10 0 00 0O k 0 x
y 00 0 0 0O 0 k x
a a a a o0 o o a a a

) Determinant :)

n >= 0
(—g +1-2 _1]: z_n=l)](6_1 +y>) (k" g — a2 k(3T n 4 2q 2 K(73)
- (—% +a-— a(—;-l- 2 _ a(—z-l- y)) (k=2 p — %xk(*rﬂn) n? + %xk(’r””) n + z k(73+7)

> DBform(d+2,[[col[1],1]1,[coll[d+2],[[1,s[1]1" 21, [2..d+1,t[i-1]" 2],[d+2,d*t" 2111,
[diag, [[2..d+1,t[i-1]]]1], [row[1],[2,s[1]1]1], [row[d+2],[2..d+1,t]]],print,check([7]);

Matriz -
(1 s 0 0 o o o 0 ;2]
1 &4 0 0 0 0 0 0 ¢#°
1 0 t2 0 0 0 0 0 ¢t2
1 0 0 t3 00 0 0 ¢t2
o 0 0 0 o 00 0 o
o 0 0 0 0 o 0O 0 o
o 0 0 0 0 0 o 0 o
1 0 0 0 0 0 0 tg tq°
L 1 t t t o o o t dt

Determinant :
n >= 5
5 d d d+1
(=) ((I] tarr—)at® =t (I tavr—i) (D tayo—i)

t
S =1 I =2

d d a1y
— (s1? —t1 51) ((H tag1-1) —t(H tat1-1) (Z))
!

tgtro—
I =1 I =1 =2 d+2-1_

> DBform(d+2,[[col[1],1],[col[d+2],[[1,d*t"~ 2],[2..d+1,t[i—1]§],[d+2,d*SA 2111, [diag,
[2..d+1,t[i-1]11], [row[1],[2..d+1,t]], [row[d+2],[2..d+1,s]]],print,check);

Matriz :

B.1. THE FRAMEFORMS PACKAGE 145

(1t t 00 0 t df]
1 & 0 0 0 0 0 ¢#?
1 0 t2 00 0 0 ¢t°
o 0 0 o 00 0 o
o 0 0 0 o 0 0 o
o 0 0 00 o 0 o
1 0 0 0 0 0 tg t4°
i 1 s s 0o o o s ds? |

Determinant :

n >= 4

d+1

d d
(_é +) (T tasi—e)ds® —s (] tari—i) (S tava—i)

1_=1 1 =1 1 =2

d d d+1 1
— (—dst+dt?) ((H tayi—1) — s (H tari-1_) (Z))
!

tgio_
=1 =1 g A2l

> DBform(n,[[row[2],[[1..1,d4],[2..2,a],[3..3,b],[4..4,d4],[5..5,c],[6..n,d]]], [row([5],
[[1..2,e],[3..3,b],[4..4,e],[5..5,al],[6..n,e]] 1,[col[3],[[1..2,b],[3..3,al,[4..n,b]]],
[col[5], [[1..4,c],[5..5,a],[6..n,c1]] , [diag,a]],print,check);

Matriz
(a0 b 0 c 00000 0]
d a d ¢c d d o o o d
0 0a 0O c 0O0O0O0O0O
0 0bac 0O0O0O0O0O0
e e b e ae e o o o e
0 0b 0O ca 0O0O0O0TO0
0 0b 0O c 0 a 0O0O0O0
0 0o 0o 00 o 0O0O0
0 0o 0o 000 o0 00
0 0o 0o 00 0O o000
LO 0 b 0O c 0O0O0O0O a |

Determinant :

n >= 0

(=b+a) (@™ Y +cea™YVnd-cea = n—-3cea™Vd+2a 3t ce) +a ™D b(a -)

146

APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

See Also: FRAMEFORMS, FRAMEFORMS[Arrow|, FRAMEFORMS|Rform]

Function: FRAMEFORMS|[Frameform]| - determinant of an arbi-
trary frame form matrix

Calling Sequence:

Frameform(n, specL)
Frameform(n, specL, print)
(
(

Frameform

n, specL, check) or Frameform(n, specL, check[k])

Frameform(n, specL, print, check) or Frameform(n, specL, print, check[k])

Parameters:
n - order of determinant (positive integer or symbolic expression of the form n+d,d
integer)
specL - specification of the frame form matrix (see FrameformMatrix for details)
print - optional display directive
check - optional checking directive
check[k] - optional checking directive (k positive integer)
Description:

The function Frameform computes a formula for the determinant of the specified frame form matrix.
If necessary, the valid range for the formula is displayed. This is the most general function in this
package; it determines the type of the frame form (e.g. arrow type or form7 type, etc.) and calls the
appropriate function.

The optional directive check or check[k] , k positive integer, enables the checking mechanism: The
determinant of a integer order matrix is computed using the standard det function and is compared
with the value of the output formula for the same order. Default for the check order is 4 and can be
set to an arbitrarily large value using check|k]. If the output formula is only valid for higher orders, the
check order is automatically adapted. If the order n is an integer, the check value is set to n.

The directive print (optional) prints the specified arrow shaped matrix before returning the determinant
formula.

The command with(FRAMEFORMS) or with(FRAMEFORMS, Frameform) allows the abbreviated
form of this command after setting the libname appropriately.

Examples:
> with(FRAMEFORMS) :
> Frameform(n,[[cdiag[1],1],[col[n],2], [row[n],[1..n-1,b]]]1,print,check);

Matriz :

B.1.

O O O O O O O O w o =

O O O O O O O O w NN o

THE FRAMEFORMS PACKAGE

> = O O O O O

000 01 2
00010 2
0 0o 00 o
0 o 00 0 o
o 00 0 0 o
000 00 2
b o o o b 2
Determinant :
n >= 3

9 (_1)(n+ﬁoor(1/2 n)) (_1 +bn— b)
> Frameform(n,[[diag,1],[col[1],[2..n,i]1],[col[n],[1..n-1,x~2]]],print,check[9]);

O O O O O O o o w o o

O O O O O O O = w o o

Matriz :

O O O O O = O

o O

o O O O

0

o O O

0
0
0

0

o O O O

0
0

o = O O O O O

Determinant :

o O O O O O ot o w o o

n

>= 3

1—2%n
> Frameform(n, [[row[3],3],[col[n-2],[[1..3,3],[4..n,n-211], [diag,il],print,check);

Matriz :

0
0

o O

e}

O O O o O

0
0

o) o O O

oSO O O O

0
0

o O O O o

o O O o

n—2

n—2

n—2
n—2

n—2

o O O O o o w o o

3
|
—

o

o O O O O o o w o o

3

147

148 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

Determinant :

See Also: FRAMEFORMS

B.2. THE ALTERNANT PACKAGE 149
B.2 The ALTERNANT package

This is the tutorial to the ALTERNANT package which is also available as on-line documentation.

Help For: Introduction to the ALTERNANT package

Calling Sequence:

function(args)
ALTERNANT[function](args)

Description:

e To use an ALTERNANT function, either define that function alone using the command with(ALTER-
NANT, function), or define all ALTERNANT functions using the command with(ALTERNANT).
Alternatively, invoke the function using the long form ALTERNANT|function]|. This long form notation
is necessary whenever there is a conflict between a package function name and another function used
in the same session.

e The functions available are: Alternant, AlternantMatrix, DP, CSF, evalcsf, CSFcofactorMatrix, ESF,
ESFcofactorMatrix, S_to_esf, evalesf, DoubleAlternant, DoubleAlternantMatrix, DoubleAlternant Co-
factorMatrix, TrigAlternant

e This package provides a number of functions computing the determinant of an alternant (a matrix
with columns generated by different functions (polynomials) in variables x[i]). Different methods can
be used to obtain results with different representation of the symmetric sum which is cofactor of the
difference product in every alternant.

Unfortunately a formula for an alternant of symbolic order n can only be determined for special
alternants:

e.g. alternants with maximum degree of n+k (k integer) for the generating polynomial(s).

e For more information on a particular function, see ZALTERNANT [function].

See Also: FRAMEFORMS, HESSENBERGandCONTINUANT, SYMMETRIC

Function: ALTERNANT][AlternantMatrix] - matrix of the specified alternant
Calling Sequence:

AlternantMatrix(n,x,F)

Parameters:
n - alternant order (symbolic or integer value)
X - variable base name (for variables x[1],..,x[n])
F - list of piecewise function specifications specifiying the alternant (see the Specifica-
tion for details)
method -

print - optional display directive

150 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES
Specification:

The piecewise specification with column generating functions should look like this:
[[1.p1,f_1], [p1+1..p2,f 2], ... , [p_k+1.n,f k]|

with 1 <=pl <p2<..<p k<=n

The positions p have to be integers, in the symbolic case of the form d or n-d, with d posint.
The functions f in each interval have to be polynomials in x[i] of the form

Sy (e it + dyz;(@7+0))

with ¢_1, d_1integer or variables distinct from i; q_1, p_I integer and k,a posint.

That is, a sublist L=[p1..p2,x[i]"j +1] in the piecewise function specification list means, that the column p1
is generated by the function x[i]"p1l +1 and so on until the column p2 which is generated by the function
x[i]"p2 +1.

Short Cuts:

e If the matrix is generated by a single generating function f, we may write f instead of [[1..n,f]].

e If an interval contains only one element, we may write [p,f] instead of [p..p,f].

Description:
e The function AlternantMatrix returns the matrix of the specified alternant.

e Note, that for symbolic alternant order, the returned matrix should be used for illustrative purposes
only, since the dots "o" used to abbreviate the symbolic case are treated as usual matrix entries by
Maple in any further computation.

e This function is part of the ALTERNANT package and so can be used in the form AlternantMatrix(..)
only after setting the libname appropriately and performing the command with(ALTERNANT) or
with(ALTERNANT,AlternantMatrix).

Examples:
> with (ALTERNANT) :

> AlternantMatrix(4,x,x[i]l"j);

I I I I
Ty T2 T2 T2
r3 T3 rs3 T3

T4 T4 2 T4 T4

B.2. THE ALTERNANT PACKAGE

> AlternantMatrix(n,x,[[1..2,x[i]~(j-1]1,[3..n- 1,x[i]1~j],[n..n,4*x[1]1~2]]);

(1 T 12 x? 0o o a:l(”_Q) a:l("_l) 4 242 |
1 xa° 22t 0 0 xa(n2) 2o (n—1) 4 292
1z x3® 23t 0 o ax3(n2 x5(n—1) 4 352
1 T4 x4° x4? 0o o a:4(”_2) a:4("_1) 4 342
) 0 0 0 o 0 0 0
) 0 0 0 o 0 0 0
1 Zpos Tpo® Tp—a? 0 0 oD 3, 7D 4g, 2
1 Zper Tpt® zpa? 0 0 7Yz, (07D 4g, 2

L 1z, T’ ot 0 o x,("2 2, ("D 42,2

> AlternantMatrix(5,x,[[1..3,1+x[i]~j],[4..5,a- b*x[i]1~(j+1)+x[i1]11);

(1+x1 1422 1422 a—bx®+21 a—bx%+ 2y
14+xs 14202 1422° a—bzs®+z0 a—bzb + a9
1423 14232 14232 a—bas®+z3 a—basb +as

1424 14242 1424° a—bxs®+x4 a—bas® +a24

Ll—l—az5 14252 14252 a—bas®+25 a—baxs® + a5

See Also: ALTERNANT][Alternant]

Function: ALTERNANT][Alternant| - determinant of a specified alternant

Calling Sequence:

Alternant(n,x,F)
Alternant(n,x,F,method)
Alternant(n,x,F,print)

Alternant (n,x,F,check)

Alternant (n,x,F,;method,print)
Alternant(n,x,F,method,check)
Alternant (n,x,F,method,print,check)

Parameters:
n - alternant order (symbolic or integer value)
X - variable base name (for variables x[1],..,x[n])
F - list of piecewise function specifications specifiying the alternant (see the Specifica-
tion for details)
method - optional computation directive: esf, csf or normal
print - optional display directive
check - optional checking directive

check[k] - optional checking directive (k positive integer)

151

152

APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

Description:

The function Alternant tries to compute the determinant formula of the specified alternant. If necessary,
the valid range of the formula is displayed..

If the optional directive esf is given, it is tried to compute a elementary symmetric function rep-
resentation of the determinant formula. For symbolic alternant order, this is only possible for the
following types of alternants: The Alternant has maximum degree of n+d, d integer and the specifi-
cation list F is of the form: Either the sublist [p..n-q,f] specifying the infinite intervall, we require f
to be a monomial or we have the form [[1..n, ¢; ;%) 4 ¢y 2;H52)]] ¢1,¢2,k1,k2 integer or the form

[[1..71, cx;UTd 4 (Zle) :c/“)ﬂ with c,d,k,c_1l,q 1 integer.

If the optional directive csf is given, it is tried to compute a complete symmetric function representation
of the determinant formula. For symbolic alternant order, this is only possible for the following type
of function specification: [1.n — p, cz;U+*)] has to be the first sublist, followed by arbitrary other
sublists.

If the optional directive normal is given, it is tried to compute a formula via clever factoring or simulation
of column operations. We require that the definition is complete, not piecewise, i.e. of the form [[1..n,f]].
The maximum degree of f should be n+k, k integer. For this method only, we also allow generating
functions of the form q(z;) p(x;)') with q(x[i]),p(x[i]) polynomials of finite degree independent of j
and 1(j) = kj + d k,d integer.

If no directive concerning the computation method is given, it is tried to use the most appropriate for
each special input.

The optional directive check or check[k] , k positive integer, enables the checking mechanism: The
determinant of a finite order matrix is computed using the standart det function and is compared with
the value of the output formula for the same order. Default for the check order is 4 and can be set to
an arbitrarily large value using check|[k]|. If the output formula is only valid for higher orders, the check
order is automatically adapted. If the order n is an integer, the check value is set to n.

The directive print (optional) prints the specified alternant matrix before returning the determinant
formula.

This function is part of the ALTERNANT package and so can be used in the form Alternant(..)
only after setting the libname appropriately and performing the command with(ALTERNANT) or
with(ALTERNANT,Alternant).

Examples:

>
>

>

with (ALTERNANT) :
Alternant (n,x,[[1..n-2,3*x[i]~(j-2)], [n-1..n, 2+a*x[i]~j]],esf,check);

formula valid for ,2 <n

% [] LI ITCRIP (S(2, n,)? —S(1, n, #)S(3, n, #)) ALTERNANT pp(n, =, z;)
Tk
k =1 —

Alternant (n,x,x[i]~(j-1)+x[i]~j,esf,check);

(=1)"S(n, n,) — (=) (3 S1— 1~ 1_, n,) (~1)')) ALTERNANT pp(n, 7,)
I =0

B.2. THE ALTERNANT PACKAGE 153

> Alternant(n,x, 2+x[i]~j+a*x[i]~3,esf,check);
n—1
(=)™ (S(n, n,) + aS(n, n,) — 2(Z S(I_,n,z))) ALTERNANT pp(n, z, z;)
I =0

> Alternant(n,x,1+x[i]"3+x[i]~j,normal, check);

n I -1 n I -1 n
Y P e) ([T w) T @) (I] @ =€ IT @i —1)
I =1 kE =1 k=l +1 k =1 k=l +1

l_—l l_—l n n n
(H (II @_-=znC I (= —wz‘_))) CII ¢ I (@ —=))
i =1 j =i +1 o=l +1 i =l _+1 j =i +1
> Alternant(n,x,[[1..n-1,2%x[1]1~(j)],[n..n,a*x[i]"n-x[i]~(n+1)]1],csf,check);

formula valid for , 1 <n

(=2n=1(H z;)esf(l, m,) + 2(n=1) g (H x;)) ALTERNANT pp(n, x, ;)
I =1 I =1

> Alternant(n,x, (x[1]1+2)*(atb*x[i]+c*x[i]~2)~j, normal);

(H (xr, +2)(a+bx, + cku)) ALTERNANTpp(n, x, a +bx; + cx;?)
k

7:1

> Alternant(n+2,y, 1*y[i]~j,print,check);

Matriz -
[Ly lyhi2 o o Ly (mtD Ly, (n+2)]
Ly: lys2 0 o Ly (vt 1o (7+2)
0 0 o o 0 o
o 0 0o o 0 o
Wnit lynpa® 0 0 lynpr ™ Ly (F2)
Iynt2 lynia? o0 o lyn+2(”+1) lyn+2(”+2) J

Determinant :

n+2
13 (T wr_) ALTERNANT pp(n +2, y, y;)
k=1

!
See Also: ALTERNANT][AlternantMatrix], ALTERNANT|ESFcofactorMatrix], ALTER-
NANT|[CSFcofactorMatrix], ALTERNANT|[DP]

Function: ALTERNANT|DP] - computes the difference product of a given func-
tion

Calling Sequence:

DP(n,x,f)
DP(n,x,f)

154 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

Parameters:
n - order of the difference product (symolic or integer value)
X - variable base name (for variables x[1],..,x[n])
f - polynomial in x[i

Description:

e The function DP computes the difference product prod {i<j} (f(x_j)-f(x_1i)).

e If an integer value for n is given, DP evaluates the difference product of order n. Otherwise DP returns
the unevaluated difference product of symbolic order n.

e This function is part of the ALTERNANT package and so can be used in the form DP(..) only after
setting the libname appropriately and performing the command with(ALTERNANT) or
with(ALTERNANT,DP).

Examples:
> with(ALTERNANT):
> DP(n,x,x[i]);

H (H (ng _wh))

=i1+1

> DP(4,x,x[il);

(2 — 21) (23 — 71) (24 — 21) (23 — T2) (¥4 — 22) (T4 — 23)

> DP(n,x,2*x[i]~2-x[i]1+3);

H (H (21‘,’22 — Tiy _Qxi12 +xi1)>

i1=1 o=i1+1

See Also: ALTERNANT[Alternant], ALTERNANT|[DoubleAlternant]

Function: ALTERNANT][CSF] - complete symmetric function
Calling Sequence:

CSF (k,n,x)

Parameters:

k - order of complete symmetric function
n - number of variables k <= n , n nonnegint, k integer)
X - base name of variables (i.e. we have variables x[1],x[2],..,x[n])

B.2. THE ALTERNANT PACKAGE 155

Description:

e The function CSF computes the kth complete symmetric function of the variables x[1],x[2],..,x[n]. The
kth complete symmetric function of the variables x[1],x[2],..,x[n]. is defined recursively as: CSF(k,n,x)
= x[n]*CSF(k-1,n,x) + CSF(k,n-1,x) with CSF(0,n)=1 and CSF (k,n)=0 for k negint.

e This function is part of the ALTERNANT package and so can be used in the form CSF(..) only after
setting the libname appropriately and performing the command with(ALTERNANT) or
with(ALTERNANT,CSF).

Examples:
> with(ALTERNANT):
> CSF(2,3,x);

3332—}—:633:24—3:3331—!—:622—0—3:2331 +CU12
> (CSF(4,2,x);

ot F ot o+l a4 2!
> CSF(3,3,x);

3 2 2 2 2 3 2 2 3
3"+ 23" T2+ 23721 + 322" + 12223 + 23217 + 22" 227 T1 + 22217 + 21
> CSF(1,5,x);

5+ T4 +23+ 22+ 21
> CSF(0,7,x);

> CSF(-1,5,x);
0
See Also: ALTERNANT[ESF|, ALTERNANT|Alternant]

Function: ALTERNANT|[evalcsf] - evaluate an expression containing unevalu-
ated complete symmetric function calls csf(..)

Calling Sequence:

evalcsf(expr)

Parameters:

expr - expression containing unevaluated esf(..) elementary symmetric function calls

Description:

e The function evalcsf computes the expansion of an expression containing unevaluated elementary sym-
metric function calls. Each occurrence of csf(k,n,x) is replaced with the evaluated function CSF(k,n x).

e This function is part of the ALTERNANT package and so can be used in the form evalcsf(..) only
after setting the libname appropriately and performing the command with(ALTERNANT) or
with(ALTERNANT evalcsf).

156 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

Examples:
> with (ALTERNANT) :
> evalcsf(csf(2,4,x));

T4® + T4 T3+ T4 Ty + Ta 31 + 237 + T3 T2 + T3 71 + T2 + T2 T + T
> evalcsf(csf(3,4,y));

Y P Ys +ys e +y Y F Yayst Fyays Y Fyays L+ yayet Fyaya v Hyayn” +ys’ +ystye
Tyt Yz Y F Yy Yy Y ey ey
> evalcsf(csf(4,3,x));
:U34 + 3333 o + 3333 xr1 + 3332 3322 + :U32 To X1 + 3332 :U12 + x3 :U23 + x3 :U22 r1 + T3 29 3312 + x3 3313 + 3324 + :U23 1
+ 21322 21312 + x2 21313 + 5614
> expr:=Alternant(4,x,[[1..2,a*x[1]1~(j-1)]1,[3.. 4,-x[i]~(j+1)]1],csf);
expr := a® (csf(2, 4, x)* — csf(3, 4, z) csf(1, 4,)) ALTERNANT/DP (4, z, z;)

> evalcsf (expr);

AP (x4® + 4T3+ Ta 2o + 4@ + 232+ 2320 32 + 227 + 20 + 2107 — (24 F 2P rs F i’ 2o + 142 19
+x4x32+x4x3x2 + T4232 +x4x22+x4x2x1 +x4x12+x33+x32x2+x32x1 +x3x22+x3x2x1 +x3x12
+ 2 e oz ® + :c13)(:c4 + x3 + x5 + 1)) ALTERNANT/DP(4, z, ;)

See Also: ALTERNANT[CSF|, ALTERNANT[Alternant]

Function: ALTERNANT[CSFcofactorMatrix] - cofactor of the differ-
ence product of the specified simple alternant (in terms of complete
symmetric functions) in matrix form

Calling Sequence:

CSFcofactorMatrix(n,x,F)

Parameters:

n - alternant order (symbolic or integer value)

x - variable base name (for variables x[1],..,x[n])

F - list of piecewise function specifications (here we require monomials in x[i] I!) speci-
fiying the alternant (see the Specification for details)

Description:

e The function CSFcofactorMatrix returns the cofactor of the difference product in terms of complete
symmetric functions of the specified simple alternant (i.e. generating functions have to be monomials)
in matrix form. Possible constant factors of the alternant are displayed separately.

e Note, that for symbolic alternant order, the returned matrix should be used for illustrative purposes
only, since the dots "o" used to abbreviate the symbolic case are treated as usual matrix entries
by Maple in any further computation.Otherwise, the determinant of the returned matrix multiplied
with the possible constant factor and the difference product of the variables x[1],...,x[n] equals the
determinant of the alternant.

B.2. THE ALTERNANT PACKAGE 157

e This function is part of the ALTERNANT package and so can be used in the form CSFcofactorMatrix(..)
only after setting the libname appropriately and performing the command with(ALTERNANT) or
with(ALTERNANT,CSFcofactorMatrix).

Examples:
> with(ALTERNANT) :
> CSFcofactorMatrix(4,x,[[1..2,x[i]1~j],[3..4,x[i1~ (j+1)]11);

csf(1, 4, x) csf(2,4, z) csf(4,4,z) csf(5, 4, z)
1 csf(1, 4, z) csf(3,4,z) csf(4, 4,)
0 1 csf(2, 4, x) csf(3, 4, x)
0 0 csf(l, 4, x) csf(2, 4, x)

> CSFcofactorMatrix(5,x,[[1..2,a*x[i]1~j],[3..4, -x[i]1~(j+1)]1,[5..5,x[i]1~3]11);

factor of the corresponding determinant : , a®

(csf(1, 5,) csf(2,5,z) csf(4,5,z) csf(5,5,z) csf(3,5,)]
1 csf(1, 5,) csf(3,5,z) csf(4,5,z) csf(2,5, z)
0 1 csf(2, 5, x) csf(3,5,z) csf(l, 5, x)
0 0 csf(1, 5,) csf(2, 5, x) 1

L 0 0 1 csf(1, 5, x) 0 |

> CSFcofactorMatrix(n,x,[[1..n-2,x[i]1"(j-1)],[n -1..n,x[1]1~(G+1)]11);

1 csf(l,n,z) o o csf(n—4,n,2) csf(n—3,n,x) csf(n, n, x) csf(n + 1, n, z)
0 1 o o csf(n—>5,n,2) csf(n—4,n,z) csf(n—1,n,x) csf(n, n, x)

0 0 o o csf(n—6,n,2) csfin—>5,n,2) csf(n—2,n,2) csf(n—1,n,z)
0 0 0 o0 0 0 0 0

0 0 0o o 0 0 0 0

0 0 0o o 0 1 csf(3, m, x) cst(4, n, x)

0 0 0o o 0 0 csf(2, n, z) csf(3, n, x)

| 0 0 0o o 0 0 csf(1, n, z) csf(2, n, x) |

See Also: ALTERNANT[Alternant], ALTERNANT[evalcsf]

Function: ALTERNANT|[ESF] - elementary symmetric function
Calling Sequence:

ESF (k,n,x)

158 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

Parameters:

k - order of elementary symmetric function
n - number of variables (0 <=k <= n ,n integer)
X - base name of variables (i.e. we have variables x[1],x[2],..,x[n])

Description:

o The function ESF computes the kth elementary symmetric function of the variables x[1],x]2],..,x[n]. The
kth elementary symmetric function of the variables x[1],x[2],..,x[n] is defined as sum {l<=1 1<i 2<
o <i_k<=n}x[i_ 1]x[i_2].x[i_k].

e This function is part of the ALTERNANT package and so can be used in the form ESF(..) only after
setting the libname appropriately and performing the command with(ALTERNANT) or
with(ALTERNANT,ESF).

Examples:
> with(ALTERNANT):
> ESF(2,4,x);

T1%2 + 2123+ X124+ X223 + TaXy + T3 2y

> ESF(3,3,x);

T T2 T3

> ESF(0,8,x);

> ESF(3,6,x);

12223 +T1T2T4 + 212225 +21T226 +2T123%T4 + T12T3T5 + X1 T3%g + T1T425 + T124T6 + T1T5Te
+2X2T324 +T223%5 + T2 X3T6 + X2 T4 T5 + T2 Ty Te + T2T5T6 + T3 Ty Ts + £3T4T6 + T3 T5Te + T4T5 Te

See Also: ALTERNANT|CSF|, ALTERNANT][Alternant], ALTERNANT[evalesf]

Function: ALTERNANT[ESFcofactorMatrix] - cofactor of the difference product
of the specified simple alternant (in terms of elementary symmetric functions)
in matrix form

Calling Sequence:

ESFcofactorMatrix(n,x,F)

Parameters:

- alternant order (symbolic or integer value)

variable base name (for variables x[1],..,x[n])

- list of piecewise function specifications (here we require monomials in x[i] !!) speci-
fiying the alternant (see the Specification for details)

oD
1

B.2. THE ALTERNANT PACKAGE 159

Description:

e The function ESFcofactorMatrix returns the cofactor of the difference product in terms of elementary
symmetric functions of the specified simple alternant (i.e. generating functions have to be monomials)
in matrix form. Possible factors of the alternant are displayed separately.

e Note, that for symbolic alternant order, the returned matrix should be used for illustrative purposes
only, since the dots "o" used to abbreviate the symbolic case are treated as usual matrix entries
by Maple in any further computation.Otherwise, the determinant of the returned matrix multiplied
with the possible constant factor and the difference product of the variables x[1],...,x[n] equals the

determinant formula of the alternant.

e This function is part of the ALTERNANT package and so can be used in the form ESFcofactorMatrix(..)

only after setting the libname appropriately and performing the command with(ALTERNANT) or
with(ALTERNANT ESFcofactorMatrix).

Examples:
> with(ALTERNANT) :

> ESFcofactorMatrix(5,x,[[1..3,x[1]1~(j-1)]1,[4.. 5,x[11~(G+1)]11);

[1 0 0 0 0 0 0 |
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
S(5,5,x) S(4,5,x) S(3,5,z) S(2,5 z) S(1,5,z) S(0,5, z) 0
I 0 S(5,5,x) S(4,5,2) S(3,5,z) S(2,5 z) S(1,5,z) S(0,5,) |
> ESFcofactorMatrix(4,x,[[1..3,2%x[i]~(j+3)1,[4 ..4,-x[i]1"(j-3)11);
[0 0 0 0 2 0 0 |
0 0 0 0 0 2 0
0 0 0 0 0 0 2
0 -1 0 0 0 0 0
S4,4,z) S(3,4,z) S(2,4,z) S(1,4,z) S(0,4, z) 0 0
0 S(4,4,2) S(3,4,z) S(2,4,z) S(1,4,z) S(0,4, z) 0
I 0 0 S(4,4,2) S(3,4,z) S(2,4,z) S(1,4,z) S(0,4, z) |

>

ESFcofactorMatrix(n,x,[[1..1,x[i]1~(j-1)]1,[2..

2,x[i]1°21,[3..n,j*x[i1~j1]1);

160 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

[1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0 0
0 0 0 0 0 o 0 0 0 0 0
0 0 0 0 0 0 o 0 0 0 0
0 0 0 0 0 0 0 n—3 0 0 0
0 0 0 0 0 0 0 0 n—2 0 0
0 0 0 0 0 0 0 0 0 n—1 0
0 0 0 0 0 0 0 0 0 0 n

L S(n,n,z) S(n—1,n,z) S(n-—2,n,z) S(n—3,n,2) S(n—4,n,2) o o S(3,n,z) S(2,n,z) S(l,n,z) S(0,n,z)

See Also: ALTERNANT[Alternant], ALTERNANTI[S to esf], ALTERNANT|evalesf]

Function: ALTERNANT|[S to esf] - replace S(k,n,x) with (-1) k*esf(k,n,x)
Calling Sequence:

S_to_esf(expr)

Parameters:

expr - expression (or matrix) containing unevaluated S(..) functions.

Description:

e The function S_to_ esf substitutes the longer form (-1) ~k*esf(k,n,x) for the abbreviation S(k,n,x). The
abbreviation is often used to make the output more readable. If n is integer then the expanded output
for the expression containing elementary symmetric function can be obtained using the ALTERNANT
package function evalesf.

e This function is part of the ALTERNANT package and so can be used in the form S to_esf(..)
only after setting the libname appropriately and performing the command with(ALTERNANT) or
with(ALTERNANT,S to_esf).

Examples:
> with(ALTERNANT):
> S_to_esf(sum(S(1,4,x),1=0..4));

esf(0, 4, x) —esf(1, 4, z) + esf(2, 4, z) — esf(3, 4, z) + esf(4, 4,)
> S_to_esf(S(n-2,n,x)*S(3,n,x)-S(0,n,x));

—(=1)"esf(n — 2, n, x) esf(3, n,) — esf(0, n,)
> expr:=Alternant(n,x,[[1..2,2%x[i]1~(j-1)]1,[3.. mn,-x[i]1~(G+1]11);

formula valid for ,2 <n

expr = —4 (=1)"*V (S(n — 2, n,)2 = S(n — 3, n,) S(n — 1, n, 2)) ALTERNANT/DP(n, z, z;)

B.2. THE ALTERNANT PACKAGE 161

> S_to_esf(expr);
4(=1)" (esf(n — 2, n, z)® — esf(n — 3, n, z)esf(n — 1, n, z)) ALTERNANT/DP(n, z, z;)
> evalesf(S_to_esf(-S(1,3,x)+5(2,3,x)"2));
T14 22+ 23+ (T3 21 + T3 2 + T2 71)°

See Also: ALTERNANT|[ESFcofactorMatrix], ALTERNANT|[ESF], ALTERNANT[evalesf],
ALTERNANT][Alternant]

Function: ALTERNANT|[evalesf] - evaluate an expression containing unevalu-
ated elementary symmetric function calls esf{(..)

Calling Sequence:

evalesf(expr)

Parameters:

expr - expression containing unevaluated esf(..) elementary symmetric function calls

Description:

e The function evalesf computes the expansion of an expression containing unevaluated elementary sym-
metric function calls. Each occurrence of esf(k,n,x) is replaced with the evaluated function ESF (k,n x).

e This function is part of the ALTERNANT package and so can be used in the form evalesf(..) only
after setting the libname appropriately and performing the command with(ALTERNANT) or
with(ALTERNANT evalesf).

Examples:
> with(ALTERNANT) :
> evalesf(esf(2,4,x));

TaT1 +T3T1 +T3T2 +T4T1 +T4T2 + T4 T3
> evalesf(esf(4,5,y)+esf(2,5,y));

Y2YsYaYs T Y1YsYa¥Ys +Y1Y2YaYs T Y1Y2Y3Ys T Y1 Y2Y3Ya +Y1Ys T Y2Ys T YsYs +YaYs + Y1 Y2
Fy1ys +Y2ys + Y1 Y4 + Y2 Y4 + Y3 Y4

> expr:=Alternant(5,x,[[1..2,x[i]~j],[3..5,x[i] ~(j+1)]1],esf,check);
expr := S(5, 5, £)S(3, 5,) ALTERNANT pp (5, x, x;)

> evalesf(S_to_esf(expr));

L1 Lo X3 T4 Ty
(:U4a:3:n1+:U1:U3w5+azlaz4m5+x4az3w2+w2m3m5+az2w4x5+:U3:U4as5—|—a:4:n2:n1+x1w2w5+w3m2w1)

(2 — 1) (23 — 21) (T4 — 71) (75 — 21) (23 — 22) (¥4 — 22) (T5 — 2) (24 — x3) (25 — 73) (25 — 74)

162

APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

See Also: ALTERNANT[ESF|, ALTERNANT[Alternant] , ALTERNANTI[S to_esf]

Function: ALTERNANT|[DoubleAlternantMatrix| - matrix of a specified double
alternant

Calling Sequence:

DoubleAlternantMatrix(n,x,y,F)

Parameters:
n - alternant order (symbolic or integer value)
X - variable base name (for variables x[1],..,x[n])
y - variable base name (for variables y[1],..,y[n])
F - generating function specifiying the double alternant of the forms:

For integer orders, F has to be a polynomial in x[i] and y[j],

For symbolic order, we require one of the following forms:

- (az; +by;)* with k<=n , a,b integer (or integer variables);

- Sum(ZZ:l cr ¢;P* y; % l=s..n) with 0<=s<=n , d posint, c[k] integer (variables)
and plk]=1| n-l1|a, 0<=a<—=n

qlk]=1|n-1| b, 0<=b<=n.

- Sum(ZZ:1 e ¢;P* y; % l=s.n-1) with 0O<=s<=n-1, d posint, c[k] integer (vari-
ables)

and plk]= 1| n-l-1 | a, 0O<—=a<=n-1

qlk]=1|n-l-1 | b, 0<=b<=n-1.

Description:

e The function DoubleAlternantMatrix returns the matrix of the specified double alternant.

e For symbolic orders, the resulting matrix should be used for illustraive purposes only, since Maple
treats the dots ‘o’ abbreviating the symbolic order as usual matrix entries.

e This function is part of the ALTERNANT package and so can be used in the form DoubleAlternantMa-
trix(..) only after setting the libname appropriately and performing the command with(ALTERNANT)
or with(ALTERNANT ,DoubleAlternantMatrix).

Examples:
> with(ALTERNANT) :
> DoubleAlternantMatrix(4,x,y,Sum(2*x[i]~1*y[j] ~1,1=0..4));

4 4 4 4 T
(Y aly) Y o'y Y @a'y) Y Qa'w)
=0 =0 =0 =0
4 4 4 4
Yo@aly) Y 2aly) D (2wlys) D (2a'w)
=0 =0 =0 =0
4 4 4 4
do@asty!) D aslye!) Y (aslys) D (2s'yal)
=0 =0 =0 =0
4 4 4 4
L (2zd' ") (224! yo') (224" ys') (224" ya')
=0 =0 =0 =0 i

B.2. THE ALTERNANT PACKAGE 163

> DoubleAlternantMatrix(n,x,y,Sum(x[i]~1xy[j]1~1 ,1=0..n));

r n n n n
Samlyt D wmlyt D w0 0 D wmilyes' Y wmlyaat D wmly
1=0 1=0 1=0 1=0 1=0 1=0
n n n n n n
Ly 1 Lyl Lyl 1 1 ! ! Ly 1
Zb n Zb Y2 Zb Y3 0o 0 ZM Yn—2 sz Yn-1 sz Yn
=0 =0 =0 =0 =0 =0
n n n n n n
Lyl Lol Lyl ! ! ! ! Ly L
2wty D wmtyt Dy wtyt oo 3wty Y mslyant D wslun
1=0 1=0 1=0 1=0 1=0 1=0

0 0 0 o 0 0 0 0
0 0 0 o 0 0 0 0
n n n n n n
E L, 1 E L, 1 E l,.1 E l l E l l E l l
Tn—2 Y1 Tn—2 Y2 Tn—2 Y3 o 0 Tn—2 Yn—2 Tn—2 Yn-1 Tn—2 Yn
=0 =0 =0 =0 =0 =0
0]

n n n n n n
g xn—llyll E wn—ll?JQI g mn—llySI o g xn—llyn—Ql g mn—llyn—ll g mn—llynl
=0 =0 =0 =0 =0 =0
n n n n n
1 1 1 1 1 1 1 1 1 1 1 1
E Tn" Y1 E Tn" Y2 E Tn'Ys 0 0 E Tn Yn-—2 E Tn Yn-1 E Tn' Yn J
L =0 =0 1=0 =0 =0

> DoubleAlternantMatrix(n,x,y, (x[il+y[j]1)~n);

(@ 49" @4y @A) 0 o @tyea)" @Ay @ty |
(z2 +11)" (z2 +y2)" (z2 +y3)" (z2 + Yn—2)" (2 + yn—1)" (z2 +yn)"
(x3 +y1)" (3 +y2)" (xz3+ys)" o o (T34 Yn—2)" (23 + Yn—1)" (3 + yn)"

e
o)

(0] (0] (0] 0o O (0] (0] (0]

(o] o o 0o O (0] o o
(Tn—2 +y1)" (Tp—2+92)" (Tp—2+y3)" 0 0 (Tn—2+yn-2)" (Tn—2+Yn-1)" (Tn-2+yn)"
(@1 +y1)" @n-14+92)" @n-1493)" 0 0 (Tn-1+yn-—2)" (@Tn-1+Yn-1)" (Tn-1+yn)"

(Tn +y1)" (Tn +y2)" (Tn+y3)" 0 0o (Tnt+yn—2)" (Tn +Yyn—1)" (Tn + yn)"

See Also: ALTERNANT|[DoubleAlternant]

Function: ALTERNANT[DoubleAlternant| - determinant of a specified double
alternant

Calling Sequence:

DoubleAlternant(n,x,y,F)
DoubleAlternant(n,x,y,F print)
DoubleAlternant(n,x,y,F,check)
DoubleAlternant(n,x,y,F,print,check)

164 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES
Parameters:
n - alternant order (symbolic or integer value)
X - variable base name (for variables x[1],..,x[n])
y - variable base name (for variables y[1],..,y[n])
F - generating function specifiying the double alternant of the forms:
For integer orders, F has to be a polynomial in x[i] and y[j],
For symbolic order, we require one of the following forms:
- (az; +by;)* with k<=n , a,b integer (or integer variables);
- Sum(2221 cx ¢;P* y; % l=s..n) with 0<=s<=n , d posint, c[k] integer (variables)
and plk]=1| n-1| a, 0<=a<=n
qlk]=1| n-1| b, 0<=b<=n.
- Sum(ZZ:1 e &;P* y; % l=s.n-1) with 0<=s<=n-1, d posint, c[k] integer (vari-
ables)
and plk]=1] n-I-1 | a, 0<=a<=n-1
qlk]=1| n-l-1 | b, 0<=b<=n-1.
print - optional display directive
check - optional checking directive
check[k] - optional checking directive (k positive integer)
Description:

e The function DoubleAlternant tries to compute the determinant formula of the specified double alter-
nant. If necessary, the valid range of the formula is displayed.

e For symbolic double alternant oders, it is tried to reduce the specified double alternant to frame form
and to solve it with functions of the FRAMEFORMS package. In the symbolic case, it is necessary,
that we have at most two rows and columns and one diagonal in the double alternant’s cofactor matrix,
otherwise, we cannot compute the alternant.

e For integer orders, we simply use the normal det function on the cofactor matrix.

e The optional directive check or check[k] , k positive integer, enables the checking mechanism: The
determinant of a finite order matrix is computed using the standard det function and is compared with
the value of the output formula for the same order. Default for the check order is 4 and can be set to
an arbitrarily large value using check[k]. If the output formula is only valid for higher orders, the check
order is automatically adapted. If the order n is an integer, the check value is set to n.

e The directive print (optional) prints the specified alternant matrix before returning the determinant
formula.

e This function is part of the ALTERNANT package and so can be used in the form DoubleAlternant(..)
only after setting the libname appropriately and performing the command with(ALTERNANT) or
with(ALTERNANT DoubleAlternant).

Examples:
> with (ALTERNANT) :
> DoubleAlternant(n,x,y, (3*x[i]1+2*y[j]1) ~(n-1),c heck);

(—1yfieer@/2m (TT binomial(n — 1, n — 1_) 3" ~1-) 2010y ALTERNANT pp(n, 7, ;)
l7=1
ALTERNANT pp(n, y, y;)

B.2. THE ALTERNANT PACKAGE 165

> DoubleAlternant(n,x,y, (x[i]+y[j])~(n),check);

n >= 2

n+1 n+2
(—1)(ntoor(1/2m) (H binomial(n, n— I +1)) (Z Sm+2-1_,ny)S(-=2+1_,n, x))
U

= = binomial(n, n +2 —1)

ALTERNANT pp(n, z, %) ALTERNANT pp(n, y, y:)

> DoubleAlternant(n,x,y,Sum(2*x[i]~1*y[j]1~1,1=0 ..n),check);

n+2
2™ (Z S(=2+1 _,n,y)S(-2+1_,n,x)) ALTERNANT pp(n, x, x;) ALTERNANT pp(n, y, y;)
I =2

> DoubleAlternant(n,x,y,Sum(x[i]~1xy[j]~1+a*xx[i]~2*y[j]1~1,1=0..n),check);

n >= 0
((1 + a) ((i S(_2 + l_a n, y) S(_2 + l_: n, 1‘)) - S(”a n, x) S(”a n, y) - S(TL -]-7 n, I) S(n -]-7 n, y))
=2

n—1

_S(n_2= n, y) (S(TL - 27 n, JL‘) _a(z S(_2+ l_a n, x)) _S(n= n, x)a—S(n— 1: n, I) a))

=2
ALTERNANTDP(TL, Z, xl) ALTERNANTDP(TLI Yy, y,’)

> DoubleAlternant(n,x,y,Sum(x[i]~1*y[j]~1+x[i]~ 1*y[j]~2+a*x[i]~2*y[j]1~1,1=0..n-1),check);
n >= 3
(24+2a—an) ALTERNANT pp(n, z, ;) ALTERNANT pp(n, y, y;)
See Also: ALTERNANT[DoubleAlternantMatrix] ALTERNANT[DoubleAlternantCofactorMatrix]

ALTERNANT[DP]

Function: ALTERNANT[DoubleAlternantCofactorMatrix]| - matrix of the co-
factor of the difference products of the specified double alternant

Calling Sequence:

DoubleAlternantCofactorMatrix(n,x,y,F)

166 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

Parameters:
n - alternant order (symbolic or integer value)
x - variable base name (for variables x[1],..,x[n])
y - variable base name (for variables y[1],..,y[n])
F - generating function specifiying the double alternant of the forms:

For integer orders, F has to be a polynomial in x[i] and y[j],

For symbolic order, we require one of the following forms:

- (ax; + by;)* with k<=n , a,b integer (or integer variables);

- Sum(22:1 cr ;P y; 7 l=s..n) with 0<=s<=n , d posint, c[k] integer (variables)
and plk]=1| n-1] a, 0<=a<=n

qlk]=1|n-1| b, 0<=b<=n.

- Sum(ZZ:1 e ¢;P* y; % l=s..n-1) with 0O<=s<=n-1, d posint, c[k] integer (vari-
ables)

and plk]=1] n-1-1 | a, 0<=a<=n-1

qlk]=1|n-l-1 | b, 0<=b<=n-1.

Description:

e The function DoubleAlternant CofactorMatrix returns the matrix of the cofactor of the difference prod-
ucts of the determinant formula of the specified double alternant. A possible sign factor is multiplied
to the first row.

e For symbolic orders, the resulting matrix should be used for illustraive purpuses only, since Maple
treats the dots ‘o’ abbreviating the symbolic order as usual matrix entries.

e The possible sign factor is multiplied to the first row of the matrix, such that for integer orders, we
indeed get the cofactor of the difference products DP(n,x,x[i])*DP(n,y,y[i]) if we apply Maples det
function on the resulting matrix.

e This function is part of the ALTERNANT package and so can be used in the form DoubleAlter-
nantCofactorMatrix(..) only after setting the libname appropriately and performing the command
with(ALTERNANT) or with(ALTERNANT,DoubleAlternantCofactorMatrix).

Examples:
> with(ALTERNANT) :
> DoubleAlternantCofactorMatrix(n,x,y, (x[i]l+y[j 1) n);

(0 0 0 0 0 —binomial(n, n) —S(n, n, y)]
0 0 0 0 binomial(n, n—1) 0 S(n—1,n,y)
0 0 0 o 0 0 0
0 0 o 0 0 0 0
0 0 0 0 0 0 0
binomial(n, 0) 0 0 0 0 0 S(0, n, y)
L S(n, n, x) Sn—1,n,z) o o 0 S(0, n, x) 0 |

B.2. THE ALTERNANT PACKAGE

167

> DoubleAlternantCofactorMatrix(n,x,y,Sum(x[i]~ 1*y[j]~1+y[j]1~1*x[i],1=0..n));

(-1 -1

2
1

0

1

O O O O o o O
Q

O O O O = O O

0

O O O = O O O

0

e o O O O

o O O

L S(n,n,z) Sn—1,n,2) S(n—2,n,z) Sh—3,n,z) o

o O o o O

e}

0
0

o

o O O o o O

0

o

> DoubleAlternantCofactorMatrix(5,x,y,sum(x[i]~ (5-1)*y[j]~1+2*x[i]~2*y[j]1~1,1=0..5));

= o O O O O
O =H O O O O O

S(5,5,2) S(4, 5,)

-2

S(3, 5, x)

NN W NN

o O O = O O

S(2, 5, x)

o O O O = O

S(1, 5, z)

> DoubleAlternantCofactorMatrix(5,x,y,sum(x[i]~ 1*y[j]1~1,1=0..8));

o 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0
S(5,5,z) S(4,5,x) S(3,5,)
0 S(,52) S@4,5a)

o O O = O O O

o O = O O O O

o = O O O O O

0 —S(n, n, y)]
0 S(n—1,n,y)
0 S(n—2,n,y)
0 S(n—3,n,y)
0 0
0 0
0 0
1 S(0, n, y)
S(0, n, x) 0
1 -S(5,5,9) |
0 S(4, 5, y)
0 S(3, 5,)
0 S(2, 5,)
0 S(1, 5, y)
0 S(0, 5, y)
5(0, 5, o) 0o |
0 S(5, 5, y) 0
0 S(4,5,y) S(5,5,9)
0 S(3,5,y) S4,5,y)
0 S(2,5,y) S(3,5,9)
0 S(1,5,y) S(2,5,9)
0 S(0,5,y) S(1,5,y)
1 0 S(0, 5, y)
0 0 0
S(0, 5, z) 0 0

See Also: ALTERNANT|[DP], ALTERNANT[DoubleAlternant]

Function: ALTERNANT|TrigAlternant] - determinant of a simple trigonometric

alternant
Calling Sequence:

TrigAlternant(n,x,F)

168 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

Parameters:
n - alternant order (symbolic or integer value)
X - variable base name (for variables x[1],..,x[n])
f - list of the form sin((j — k1) x; + d1) or cos((j — k2) z; + d2) with d1,d2 integer (or
integer variables), k1 nonnegint and k2 posint.
print - optional display directive
Description:

e The function TrigAlternant computes the determinant formula of the specified simple trigonometric
alternant.

e The directive print (optional) prints the specified alternant matrix before returning the determinant
formula.

e This function is part of the ALTERNANT package and so can be used in the form TrigAlternant(..)
only after setting the libname appropriately and performing the command with(ALTERNANT) or
with(ALTERNANT, TrigAlternant).

Examples:
> with(ALTERNANT):
> TrigAlternant(n,x,sin(j*x[i]));

22(1/2(n+1) (n=2)) (H sin(z;) (H (H (cos(zg) —cos(z;))))
1 =1 =1 k=1 41

> TrigAlternant(n+2,y,cos((j-1)*y[i]+k) ,print);

(cos(k) cos(y1+k) o o cos(ny +k) cos((n+ 1) y1 + k)
cos(k) cos(y2+k) o o cos(nys+k) cos((n+1)y2 + k)

0 0 o o 0 0

0) o o) 0

cos(k) cos(ynt1+k) o o cos(nypy1 +k) cos((n+1)ypi1 + k)

L cos(k) cos(Yni2+k) o o cos(nynpio+k) cos((n+1)ynia + k)

n+2 n+2 n+2

4 9(1/2(n43) (n=2)) H cos(k) cos(y;) — sin(k) sin(y;) (H (H (cos(y_) — cos(yi))))

I =1 cos(y:_) I =1 k =1 +1

See Also: ALTERNANT[DP]

B.3. THE HESSENBERGANDCONTINUANT PACKAGE 169
B.3 The HESSENBERGandCONTINUANT package

This is the tutorial to the HESSENBERGandCONTINUANT package which is also available as on-line
documentation.

Help For: Introduction to the HESSENBERGandCONTINUANT package
Calling Sequence:

function(args)
HESSENBERGandCONTINUANT [function](args)

Description:

e To use a HESSENBERGandCONTINUANT function, either define that function alone using the com-
mand with(HESSENBERGandCONTINUANT, function), or define all HESSENBERGandCONTIN-

UANT functions using the command with(HESSENBERGandCONTINUANT). Alternatively, invoke
the function using the long form HESSENBERGandCONTINUANT|function]. This long form nota-
tion is necessary whenever there is a conflict between a package function name and another function
used in the same session.

e The functions available are: Continuant, ContinuantMatrix, HessenbergDet, HessenbergMatrix

e This package provides functions to compute a determinant formula for specified Continuants (deter-
minants of tridiagonal matrices) and Hessenberg matrices. An explicit formula can only obtained for
special cases, otherwise a recurrence relation for the determinant is returned.

e For more information on a particular function, see HESSENBERGandCONTINUANT|[function].

See Also: ALTERNANT, FRAMEFORMS, SYMMETRIC

Function: HESSENBERGandCONTINUANT|[ContinuantMatrix| - matrix of a
specified continuant

Calling Sequence:

ContinuantMatrix(n, mainDiag, upperDiag, lowerDiag)

Parameters:
n - continuant order (symbolic or integer value)
mainDiag - (possibly piecewise) specification of the main diagonal.
e.g. mainDiag = [[1..p1,f1],[p1+1..p2,£2], ... , [n-p_k +1..n,f k]]
with f 1 functions in i, and p_1 integer.
Short cut for [[1..n,f]] is simply f and short cut for [....[p..p.f],...] is [...,[p.f].--.]
upperDiag - specification of the first upper diagonal specification like mainDiag with n-1 as end
interval bound)
lowerDiag - specification of the first lower diagonal specification like mainDiag with n-1 as end

interval bound)

170 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES
Description:

e The function ContinuantMatrix returns the matrix of the specified continuant. If the order is symbolic
then dots "o" are used to abbreviate the symbolic form; thus the returned matrix in this case should
be used for illustrative purposes only, since Maple treats the "o"’s as usual matrix entries.

e This function is part of the HESSENBERGandCONTINUANT package and so can be used in the
form ContinuantMatrix(..) only after setting the libname appropriately and performing the command
with(HESSENBERGandCONTINUANT) or with(HESSENBERGandCONTINUANT,ContinuantMatrix).

Examples:
> with(HESSENBERGandCONTINUANT) :

> ContinuantMatrix(n,x+y,x,y);

(a:—}—y z 0 0 o 0
Y o o 0 0 0
0 o o o 0 0
0 0 o o o 0
0 0 0 o o z

LO o o 0 y z+y

> ContinuantMatrix(5,[[1..2,c[i]],[3..5,d]], -1, [[1..3,y]1,[4,=z[i]1]1]);

[01—1000
y ¢ -1 0 0

See Also: HESSENBERGandCONTINUANT|[Continuant]

Function: HESSENBERGandCONTINUANT|Continuant| - determinant of the
specified continuant

Calling Sequence:

Continuant(n, mainDiag, upperDiag, lowerDiag)
Continuant(n, mainDiag, upperDiag, lowerDiag, print)
Continuant(n, mainDiag, upperDiag, lowerDiag, check)
Continuant(n, mainDiag, upperDiag, lowerDiag, print,check)

B.3. THE HESSENBERGANDCONTINUANT PACKAGE

Parameters:

n -
mainDiag -

upperDiag

lowerDiag -
print -

check -
check[k] -

Description:

continuant order (symbolic or integer value)

(possibly piecewise) specification of the main diagonal.

e.g. mainDiag = [[1..p1,f1],[p1+1..p2,f2], ... , [n-p_k +1.n,f k]]

with f 1 functions in i, and p_1 integer.

Short cut for [[1..n,f]] is simply f and short cut for [...,[p..p.f],...] is [...,[p,f],.-]
specification of the first upper diagonal specification like mainDiag with n-1 as end
interval bound)

specification of the first lower diagonal specification like mainDiag with n-1 as end
interval bound)

optional display directive

optional checking directive

optional checking directive (k positive integer)

171

e The function Continuant returns the determinant formula of the specified Continuant (tridiagonal
matrix). If no explicit formula can be given, a recurrence relation is returned. In some cases, it is
possible to solve that recurrence using Maple’s rsolve function.

e The optional directive check or check[k] , k positive integer, enables the checking mechanism: The
determinant of a finite order matrix is computed using the standard det function and is compared with
the value of the output formula for the same order. Default for the check order is 4 and can be set to
an arbitrarily large value using check[k]. If the output formula is only valid for higher orders, the check
order is automatically adapted. If the order n is an integer, the check value is set to n.

e The directive print (optional) prints the specified continuant matrix before returning the determinant

formula.

e This function is part of the HESSENBERGandDIAGONAL package and so can be used in the form
Continuant(..) only after setting the libname appropriately and performing the command
with(HESSENBERGandDIAGONAL) or with(HESSENBERGandDIAGONAL,Continuant).

Examples:

> with(HESSENBERGandCONTINUANT) :
> Continuant(n,x+y,x,y,print,check);

Matriz :

(m—}—ywOOoo
y o o 0 0 o

0 o o o 0 0
0 0 o o o 0
0 0 0 o o x

L 0 o o 0 y z+4+y
Determinant :

_y(n+1) + x(n+1)

—y+z

172 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

> Continuant(n,a,b,c);
floor(1/2n)
a” (Z binomial(n — k_, k_)c*- bF- (—a?)(7F))
k =0
> Continuant(n,[[1..2,a[i]],[3..n-1,0]1,[n,k]],x ,y,print,check);

Matriz
(a2 00 0000 0]
y a2 2z 0 0 0 0 0 O
0 vy 02 00 0 0 O
0 0 v o o 0 0 0 o
0 0 0 o o o 0 0 o
o 0 0 0 o o o 0 0
o 0 0 0 0 o o z 0
0 0 0 0 00y 0 =
L 0 0 o o 0 0 0 y &k |
Determinant :

formula valid for : ;4 <n

(a1 as — xy) k (—=1)1/2n=3/2) (g4)(1/2n=1/2)
Ty
[—(a1 az — zy) (=1)172872) (g) (1/2n=1) _) o (—1)(1/21=2) () (0/20=1) piherwise]]
> Continuant(n,ali],b[i],c[i]);

+ Tyay (_1)(1/271—5/2) (ZB y)(l/Zn—3/2)= n—3= Qm],

[

RECURRENCE({C(n) = a, C(n —1) = bp_1 ¢n_1 C(n — 2), C(0) = 1, C(—1) = 0})
See Also: HESSENBERGandCONTINUANT|[ContinuantMatrix|

Function: HESSENBERGandCONTINUANT|[HessenbergMatrix]| - specified Hes-
senberg matrix

Calling Sequence:

HessenbergMatrix(n, diagSpecL)

Parameters:
n - order of Hessenberg determinant (symbolic or integer value)
diagSpecL. - specification of the diagonals -1(lower diagonal), 0 (main diagonal), 1, ..., n-1. in
the form
[[posl, specL1], [pos2, specL2] , ... , [pos_k, specL k| | with -1 <= pos_1 <=
n-1

For integer n: specL=[[1..p1,f1],[p1+1..p2,£2], ... , [p_k +1..pos, f k]
short cut for [[1..pos,f]] is simply f and short cut for [...,[p..p,f],...] is [...,[p,f];-..]
For symbolic n: specL may only be a function in i.

B.3. THE HESSENBERGANDCONTINUANT PACKAGE 173
Description:

e The function HessenbergMatrix returns the specified Hessenberg matrix. If the order is symbolic then
dots "o" are used to abbreviate the symbolic form; thus the returned matrix in this case should be
used for illustrative purposes only, since Maple treats the "o"’s as usual matrix entries.

e This function is part of the HESSENBERGandCONTINUANT package and so can be used in the
form HessenbergMatrix(..) only after setting the libname appropriately and performing the command
with(HESSENBERGandCONTINUANT) or with(HESSENBERGandCONTINUANT,HessenbergMatrix).

Examples:
> with (HESSENBERGandCONTINUANT) :

> HessenbergMatrix(4,[[-1,b], [0,[[1..2,1],[3..4,5]1]1],[2,al[i]l] 1);

o O o =
o ot = O
ot
o

> HessenbergMatrix(n,[[-1,b],[0,a[i]],[n-1,2]11) ;

ag 0 0 o o 0 z
b aa 0 0 0 O 0
0 b o 0 0 O)
0 0 o o O 0 0
o 0 0 o o 0 0
o 0 0 0 b ap-1 O
0 o o 0 O b an |

See Also: HESSENBERGandCONTINUANT|[HessenbergDet]

Function: HESSENBERGandCONTINUANTS[HessenbergDet]| - determinant
formula of specified Hessenberg matrix

Calling Sequence:

n, diagSpecL)

n, diagSpecL, print)

n, diagSpecL, check)

n, diagSpecL, print, check)

HessenbergDet
HessenbergDet
HessenbergDet
HessenbergDet

NN N N

174 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES
Parameters:
n - order of Hessenberg determinant (symbolic or integer value)
diagSpecl. - specification of the diagonals -1(lower diagonal), 0 (main diagonal), 1, ..., n-1. in
the form
[[posl, specL1], [pos2, specL2] , ... , [pos_k, specL k| | with -1 <= pos_1 <=
n-1
For integer n: specL=[[1..p1,f1],[p1+1..p2,£2], ... , [p_k +1..pos, f k]
short cut for [[1..pos,f]] is simply f and short cut for [...,[p..p,f],...] is [...,[p,f];-.]
For symbolic n: specL. may only be a function in i.
print - optional display directive
check - optional checking directive
check[k] - optional checking directive (k positive integer)
Description:

e The function HessenbergDet returns the determinant formula of the specified Hessenberg matrix. If

no explicit formula can be given, a recurrence relation is returned. In some cases, it is possible to solve
that recurrence using Maple’s rsolve function.

The optional directive check or check[k] , k positive integer, enables the checking mechanism: The
determinant of a integer order matrix is computed using the standard det function and is compared
with the value of the output formula for the same order. Default for the check order is 4 and can be
set to an arbitrarily large value using check[k]. If the output formula is only valid for higher orders, the
check order is automatically adapted. If the order n is an integer, the check value is set to n.

The directive print (optional) prints the specified continuant matrix before returning the determinant
formula.

This function is part of the HESSENBERGandCONTINUANT package and so can be used in the
form HessenbergDet(..) only after setting the libname appropriately and performing the command
with(HESSENBERGandCONTINUANT) or with(HESSENBERGandCONTINUANT,HessenbergDet).

Examples:

with (HESSENBERGandCONTINUANT) :
HessenbergDet (n, [[-1,b], [0,a], [n-3,x],[n-2,y] ,[n-1,z]],print,check);

Matriz -

(a 0 0 o o 0 z vy z-
b a 00 00 0 2 y
0 b a0O0O0O0O0 2
0 0b o 0O0O0O0O0
o 00 o o 00 0 o
o 00 0 o o 0 0 o
00 000D D a 00
0000 O0O0 Db a0

LO 0 0o o 00 b a |

Determinant :

B.3. THE HESSENBERGANDCONTINUANT PACKAGE

formula valid for : ;5 <n

a(n+1) L3 (_1)(n73) T a2 b(n72)

—1)(n=2) 4 g p(n—1) —1)(n=1) ,pn
N Y B L
b b b

> HessenbergDet(n,[[-1,b],[2,a],[n-3,x],[n-2,y] ,[n-1,z]],print,check);

Matriz :

o

o O 2 o O
Q o O
o O O

o O o O O
o R < I\

e}
Q

o O O O > O
)

o O

o O O o O 8

Q
Q

Q)

)
Q o O

o O O O O 8 <
o O

o O O o O o
)

o O O O

o O O O O o o o o o o
o O O O O o o oo o o 9

(en) (an) (an)
(en) (an) (an) (en)
o o o
o o o> o o
o o> o o IS
>~ O O 2

(an)

o O

Determinant :

formula valid for : ;6 <n

2" (—1)"
b
> HessenbergDet(n,[[-1,b],[0,a],[1,c],[2,d]],pr int,check);

2b7 (=1)"

[(ab?)1/37) — ,n=3k], [- , otherwise]]

Matriz :

o O o o 2
Q
e o O
Q o O O
o O O °

o O O O o4 2

0
0
0
0

0
0
0 0 o o ¢
0 oo 00 0 b a

Determinant :
formula valid for : ;3 <n

RECURRENCE(
{HB(-2..— 1) = 0, HB(n) = a HB(n — 1) — ¢bHB(n — 2) + db* HB(n — 3), HB(0) = 1})

175

176 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

> HeSSGHbergDet(5, [[_15b]) [05 [[1- -2,a[i]] 3 [3- -5 ,1]]] H) [1, [[1,(:] H) [2- -45_1]]] 3 [25d]) [4,6]] 3
print,check);

Matriz :

(an) (an) (an) (=
(an)
o>
S~
|
—

Determinant :

60aias +8ajasb+ajasdb®> +20a1b+ a1 b®> +5a1db®> —60c¢b— 8cb® — c¢db® + 20db?
+db® +eb?
See Also: HESSENBERGandCONTINUANT[Continuant], HESSENBERGandCONTINU-
ANT[HessenbergMatrix]

B.4. THE SYMMETRIC PACKAGE 177

B.4 The SYMMETRIC package

This is the tutorial to the SYMMETRIC package which is also available as on-line documentation.

Help For: Introduction to the SYMMETRIC package
Calling Sequence:

function(args)
SYMMETRIC|[function](args)

Description:

e Touse a SYMMETRIC function, either define that function alone using the command with(SYMMETRIC,
function), or define all SYMMETRIC functions using the command with(SYMMETRIC). Alterna-
tively, invoke the function using the long form SYMMETRIC[function]. This long form notation is
necessary whenever there is a conflict between a package function name and another function used in

the same session.

e The functions available are: AxisymmetricDet, AxisymmetricMatrix, CentrosymmetricDet, Centrosym-
metricMatrix, Circulant, CirculantMatrix, ToeplitzDet, ToeplitzMatrix

e This package provides a number of functions specifying and computing the determinant of matrices
that obey a certain symmetry like axisymmetry (with respect to the main diagonal), centrosymmetry
(with respect to the central element of the matrix) and persymmetry (with respect to the counter
main diagonal). It is possible to derive determinant formulas for arbitrary orders for special cases of

symmetric matrices with polynomial entries using these functions.

e For more information on a particular function, see ?SYMMETRIC[function].

See Also: ALTERNANT , FRAMEFORMS , HESSENBERGandCONTINUANT

Function: SYMMETRIC[AxisymmetricMatrix| - specified axisymmetric matrix
Calling Sequence:

AxisymmetricMatrix(n, mainDiag, restDiags)
AxisymmetricMatrix(n, mainDiag, restDiags, skew)

Parameters:
n - matrix order (symbolic or integer value)
mainDiag - total function in i specifying the main diagonal, i.e. a;; for 1 <=1i<=n
restDiags - total function in i and j specifying the matrix elements a; j = a; ; for1 <=i<j<=n

skew - (optional) directive for skewsymmetry, i.e. a; j = —a; ;.

178 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

Description:

e The function AxisymmetricMatrix returns the specified axisymmetric matrix. If the order is symbolic
then dots "o" are used to abbreviate the symbolic form; thus the returned matrix in this case should
be used for illustrative purposes only, since Maple treats the "o"’s as usual matrix entries.

e This function is part of the SYMMETRIC package and so can be used in the form AxisymmetricMa-
trix(..) only after setting the libname appropriately and performing the command with(SYMMETRIC)
or with(SYMMETRIC,AxisymmetricMatrix).

Examples:
> with(SYMMETRIC):
> AxisymmetricMatrix(n,alil,b);

(@ b b oo b b b
b ax b b o o b b
b b a3 o o 0 0 b
o b o o o 1) 0)
o o o o0 o0) b)
b o o o0 0 an_» b b
b b o o o b ap—1 b

b b b oo b b a

> AxisymmetricMatrix(5,i+i-1,i+j-1);

1 2 3 4 5
2 3 4 5 6
34 5 6 7
4 5 6 7 8
56789

> AxisymmetricMatrix(4,x[i],x[i]l*x[j],skew);

T T1 T2 T T3 T1 T4
—I1 T2 T2 T2 T3 T2 T4
—Tr1T3 —T2T3 rs3 T3 T4

—T1T4 —T2T4 —I3T4 T4

See Also: AxisymmetricDet

Function: SYMMETRIC|[AxisymmetricDet] -determinant of specified axisym-
metric matrix

Calling Sequence:

AxisymmetricDet(n, mainDiag, restDiags)
AxisymmetricDet(n, mainDiag, restDiags, skew)

B.4. THE SYMMETRIC PACKAGE 179
AxisymmetricDet(n, mainDiag, restDiags, print)

AxisymmetricDet(n, mainDiag, restDiags, check)

AxisymmetricDet(n, mainDiag, restDiags, skew, print)

AxisymmetricDet(n, mainDiag, restDiags, skew, check)

AxisymmetricDet(n, mainDiag, restDiags, print, check)

AxisymmetricDet(n, mainDiag, restDiags, skew, print, check)

Parameters:
n - matrix order (symbolic or integer value)
mainDiag - total function in i specifying the main diagonal, i.e. a;; for 1 <=1i<=n
restDiags - total function in i and j specifying the matrix elements a; ; = a; ; for 1 <=i<j <=n
skew - (optional) directive for skewsymmetry, i.e. a; ; = —a; ;.
print - optional display directive
check - optional checking directive
check[k] - optional checking directive (k positive integer)
Description:

The function AxisymmetricDet returns a determinant formula for the specified axisymmetric matrix.
If the specification is too general then the unevaluated function call is returned for symbolic orders.In
some cases, only a recurrence relation can be returned.

If the optional directive skew is given then the corresponding skewsymmetric determinant is computed.

The optional directive check or check[k] , k positive integer, enables the checking mechanism: The
determinant of a integer order matrix is computed using the standard det function and is compared
with the value of the output formula for the same order. Default for the check order is 4 and can be
set to an arbitrarily large value using check[k]. If the output formula is only valid for higher orders, the
check order is automatically adapted. If the order n is an integer, the check value is set to n.

The directive print (optional) prints the specified alternant matrix before returning the determinant
formula.

This function is part of the SYMMETRIC package and so can be used in the form AxisymmetricDet(..)
only after setting the libname appropriately and performing the command with(SYMMETRIC) or
with(SYMMETRIC,AxisymmetricDet).

Examples:
> with(SYMMETRIC) :
> AxisymmetricDet(n,ali],b,print,check);

Matriz :

180 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

@ b b oo b b b
b ax b b o o b b
b b a3 o o 0 o b
o b o o o) 0 0
o o o o0 o o b)
b o o o0 0 an_» b b
b b o o b b An—-1 b

b b b oo b b a

Determinant :

(H (ai b)) (1+ (Z - b_))

> AxisymmetricDet(n,x[i],x[i]l#*x[j],check);

(f_[(z1_ —561_2)) (1 + (i xlml__;l2>>

> AxisymmetricDet(n,ali],b[i],print,check);

Matrix :
(@ boboo o b b by
by ay by by o 0 ba by
by by a3 o 0 0 0 b3
o by o o o 0 o 0
o o0 o0 o 0 0 bp—3 0
by o o o 0 Ap—o bp_s bp_a
bi b2 o 0 byz bun—2 an—1 bp-1
bi by b3 o o bu_z2 bu_1 an
Determinant :

RECURRENCE(
{C(1) = ay, C(0)=1,C(n) = (an1 +2bp1+0an)Cn—1)+ (an_1 —by1)>C(n —2)})

> AxisymmetricDet(n,k,2%(i-j)+k,print,check);

Matriz :

B.4. THE SYMMETRIC PACKAGE 181

[k 24k —4+k o 0 6-2n+k 4—2n+k 2-2n+k |
—2+k k 24k —4+k o) 6—-2n+k 4-2n+k
—4+k -2+k k 0 0 0 0 6—2n+k
0 -4+ k 0 0 0 0 0 0
0) 0 0) 0 —2+k 0
6—-2n+k o 0 0 0 k —2+k —2+k
4—-2n+k 6—-2n+k o 0 -2+k 24k k —2+k

_2—2n—l—k 4-2n+k 6—-2n+k o) -2+k —2+k k |

Determinant :

—2(=1) D (=)= (—2n + 2+ 2k)

> AxisymmetricDet(n,ali],b[i],skew,print,check) ;

Matriz -

a b b oo o b b b
—-b1 as by by o 0 by ba
—b; —by a3 o 0 0 0 b3

o —bs 0 0 o 0 0 o
0 o o o 0 o bp—3 0
—by 0 0 0 0 Ap—2 bp_o bp_o
—b; —bs 0 o —b,_3 —b,_2 ap_1 bn_1
L by —by —bs o 0 —bp—2 —bp_1 an
Determinant :

RECURRENCE(
{C(1) =ay, C(0) =1, C(n) = (an + an_1) C(n = 1) + (an_1?> = bp_1?) C(n — 2)})

> AxisymmetricDet(n,0,x[i,j],skew,check);

[[SYMMETRIC/Pfaffian(n, z; ;)*, n = 2m)], [0, otherwise]]
> AxisymmetricDet(4,1,x[i,j],skew,check);

2 2 2 2 2 2 2
(1,223,4 —T1,3%2,4 +T1,4%2,3)" + T34~ +Za4” + 223" + 214" +21,3° + 21,2 +1

See Also: AxisymmetricMatrix

Function: SYMMETRIC|[CentrosymmetricMatrix| - specified centrosymmetric
matrix

Calling Sequence:

CentrosymmetricDet(n, f)

182 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

Parameters:

n - matrix order (positive integer)
f - function in i specifying the matrix elements up to the central element (read rowwise).

Description:

e The function CentrosymmetricMatrix returns the specified centrosymmetric matrix (a matrix that is
symmetric with respect to its central element: the r th row reversed is the n-r+1 th row, i.e. the the
matrix is the same when read backwards as when read forwards).

e This function is part of the SYMMETRIC package and so can be used in the form CentrosymmetricMa-
trix(..) only after setting the libname appropriately and performing the command with(SYMMETRIC)
or with(SYMMETRIC,CentrosymmetricMatrix).

Examples:
> with(SYMMETRIC):

> CentrosymmetricMatrix(4,alil);

ay; az az a4
as ag ary as
ag ar ag as

g a3z a2 a1

> CentrosymmetricMatrix(5,i+x);

1+ 24z 3+z 4+z 5S+=z
6+ 7+ 84z 9+z2 10+=z
114+2 1242 1342z 1242 1142
10+2 94z 8+2z T7T+4+z 642
54+z 44z 34+ 242 14z

See Also: CentrosymmetricDet

Function: SYMMETRIC|[CentrosymmetricDet| - determinant of specified cen-
trosymmetric matrix

Calling Sequence:

CentrosymmetricDet(n, f)
CentrosymmetricDet(n, f, print)
CentrosymmetricDet(n, f, check)
CentrosymmetricDet(n, f, print, check)

B.4. THE SYMMETRIC PACKAGE 183

Parameters:
n - matrix order (positive integer).
f - function in i specifying the matrix elements up to the central element (read rowwise).
print - optional display directive
check - optional checking directive
check[k] - optional checking directive (k positive integer).
Description:

e The function CentrosymmetricDet returns the determinant of the specified centrosymmetric matrix (a
matrix that is symmetric with respect to its central element: the r th row reversed is the n-r+1 th row,
i.e. the the matrix is the same when read backwards as when read forwards). The computation makes
use of the special structure and is faster than applying the normal det function.

e The optional directive check or check[k] , k positive integer, enables the checking mechanism: The
determinant of the specified matrix is computed using the standard det function and is compared with
the value of the output formula.

e The directive print (optional) prints the specified alternant matrix before returning the determinant
formula.

e This function is part of the SYMMETRIC package and so can be used in the form Centrosymmet-
ricDet(..) only after setting the libname appropriately and performing the command with(SYMMETRIC)
or with(SYMMETRIC,CentrosymmetricDet).

Examples:
> with(SYMMETRIC) :
> CentrosymmetricDet(4,ali],print,check);

Matriz :

a; Qa asz au
as Qag ay as
ag ay Qag as
as a3 as ap
Determinant :
(a5 as —aras + asaz —aga; + ag ax — ag as + ag az — ag a)

(asas —araqs —asaz + arar —agas + ag as + agaz — agaq)
> CentrosymmetricDet(5,i+x[i],print,check);

Matriz :

(14z 2+ x 3+ x3 44 24 5+ x5
6 + x¢ 7T+ x7 8 + x5 9+29 10+ 219
114211 124210 13+ 213 12+ 2120 114+ 211
10+ 210 9+ 29 8 + xg T4 x7 6 + x¢

L 5+ x5 4+ x4 3+ x3 2+ ax 1+

184 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

Determinant :

—((6+£L“6) (2+CU2) — (5-|—£135) (9-|—£139) — (2+£132) (104—3310) + (5+ZE5) (7+CU7)
— (4+CU4) (6+CU6) + (1 +CU1) (9+CU9) + (4+CU4) (104—3310) — (7+CU7) (1 +CU1))(—2£U8 s T12
— 22371107 + 22423711 +223T11 T2 +T13T7 1 + 22312 T6 — 2X3Tg T — 2T T12 T
—T4213Tg — 3224 — 3220+ 1621 + 3223+ 1625 — 626 + 1227 — 1228 + 1229 — 6219
— T13Tg T2 + T13 L9 T1 — T13 L10 T2 + 223 1012 + 13721 — 132629 — 16 212 21 + 16 211 22
+6$121‘6 —61‘11 X7 + 16$131‘1 +61‘13$7 - 16$13$2 —61‘13,%6 —24$81‘1 - 121‘81‘12 +22$81‘2
+ 12$81‘11 +24$3$6 +32$31‘12 - 221‘3$7 —32$3$11 + 131‘9$1 - 13$101‘2 - 221‘3$g
+ 243210 — 629211 +6T19T12 + 621379 —6x13T10 — 13 T4 26 + 2224 x5 — 13 24 210
+ 16334 11 — 16334 X13 — T4 L1310 + 13 T5 T7 + T9 T13 T5 + 135[75 Ty — 24:[78 s — 16335 I12
+ 1621325 + 1329 5)

See Also: CentrosymmetricMatrix

Function: SYMMETRIC|CirculantMatrix| - specified Circulant matrix

Calling Sequence:

CirculantMatrix(n, specL)
CirculantMatrix(n, specL, leftshift)

Parameters:
n - matrix order (symbolic or integer value)
specL - list specifying the first row of the circulant of the form: [[intervall, f1], [interval2,
2], ..
where intervals are of the form pl..p2 (with p1<=p2) and must be a partition of
[1..n]
[p1..p2, f] means that element i (p1<= i <= p2) is generated by f(i).
Short Cuts: f instead of [[1..n, f]] and [pos, f] instead of [pos..pos, f] .
The other rows of the circulant matrix are obtained by "right shifting".
leftshift - (optional) directive to use "left shifting" instead of right shifting to get the other
rows.
Description:

e The function CirculantMatrix returns the matrix of the specified Circulant (a circulant matrix is a
matrix such that any row is got from the preceeding row by passing the last element over the others to
the first place). If the order is symbolic then dots "o" are used to abbreviate the symbolic form; thus
the returned matrix in this case should be used for illustrative purposes only, since Maple treats the

"o"’s as usual matrix entries.

e This function is part of the SYMMETRIC package and so can be used in the form CirculantMatrix(..)
only after setting the libname appropriately and performing the command with(SYMMETRIC) or
with(SYMMETRIC, CirculantMatrix).

Examples:
> with(SYMMETRIC):
> CirculantMatrix(n,alil);

B.4. THE SYMMETRIC PACKAGE 185

ay as]] (47%
(47%% ay as (0] (0]
(0] (47%% ai as (0]
]] an, ajp a9
as]] an, ajp

> CirculantMatrix(n,ali],leftshift);

ay as (0] (0] (479
as]] an, ap
o o an a1 Qa2
(0] (47%% ai as (0]

a, ap a9]]

> CirculantMatrix(n,[[1..3,a],[4..n,b]]);

b o o b b a a a

a b o o b b a a

a a b o o b b a

> CirculantMatrix(5,[[1. .2,a-|_-i] ,[3,x°2]1,[4..5,p [i]]]_) ;

(a-l—l a+2 z2 Dy D5

ps a+1 a+2 22 D4

Pa D5 a+1 a+2 2°

z? Pa s a+1l a+2

La-l—Q x> Py ps a+l |

See Also: Circulant

Function: SYMMETRIC|Circulant]| - determinant of specified circulant
Calling Sequence:

CirculantMatrix(n, specL)
CirculantMatrix(n, specL, leftshift)
CirculantMatrix(n, specL, print)
CirculantMatrix(n, specL, check)
CirculantMatrix(n, specL, leftshift, print)

186

APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

CirculantMatrix(n, specL, leftshift, check)
CirculantMatrix(n, specL, print, check)
CirculantMatrix(n, specL, leftshift, print, check)

Parameters:
n - matrix order (symbolic or integer value)
specL - list specifying the first row of the circulant of the form: [[intervall, 1], [interval2,
2] , ...]
where intervals are of the form pl..p2 (with pl<=p2) and must be a partition of
[1..n]
[pl..p2, f] means that element i (p1<=1i <= p2) is generated by f(i).
Short Cuts: f instead of [[1..n, f]] and [pos, f] instead of [pos..pos, f] .
The other rows of the circulant matrix are obtained by "right shifting".
leftshift - (optional) directive to use "left shifting" instead of right shifting to get the other
rows.
print - optional display directive
check - optional checking directive
check[k] - optional checking directive (k positive integer)
Description:

The function Circulant returns a determinant formula for the specified circulant (a circulant matrix is
a matrix such that any row is got from the preceeding row by passing the last element over the others
to the first place). For some special cases of circulants, it is possible to derive nice formulas whereas
for most cases we have to settle with a general formula involving roots of unity.

The optional directive check or check[k] , k positive integer, enables the checking mechanism: The
determinant of a integer order matrix is computed using the standard det function and is compared
with the value of the output formula for the same order. Default for the check order is 4 and can be
set to an arbitrarily large value using check[k]. If the output formula is only valid for higher orders, the
check order is automatically adapted. If the order n is an integer, the check value is set to n.

The directive print (optional) prints the specified alternant matrix before returning the determinant
formula.

This function is part of the SYMMETRIC package and so can be used in the form Circulant(..)
only after setting the libname appropriately and performing the command with(SYMMETRIC) or
with(SYMMETRIC,Circulant).

Examples:
> with(SYMMETRIC) :
> Circulant(n,ali],print,check);

Matriz :

ay as (0] (0] (479
a, ap a9]]
(0] (47%% ai as (0]
o o an a1 Q2

as]] an, ajp

B.4. THE SYMMETRIC PACKAGE

n n

I [(cosc2 M) + I'sin(2 M)) a

k =1 \Il =1

Determinant :

n

> Circulant(n,ali],leftshift,print,check);

n

(_1)(1/2 (n—1) (n—2)) (H

k_=1

ai

a2

an

_:1

Matriz :
as o0 0
o o ap
o a, aq
(47%% ai as
ay a9]
Determinant :

n

Gn

a1

a2
0

0

> Circulant(n,[[1..3,a],[4..n,b]],print,check);

[(Ba+ (n—3)b)(a-

[a a
b a
b b
o b
o o
b o
a b
a a

formula valid for : , 4 <n

Matriz
a b b o
a a b b
a a a b
b a a a
b b a a
o b b a
o o b b
b o o b
Determinant :

> Circulant(n,k*x~(2%i+1) ,print,check);

ka®
k 56(2 n+1)
(0]

0

kb

kb
ks
L p(2n+1)
0

o

Determinant :

Matriz :

)
kb

k3

k $(2 n+1)

o

kb
ka3

k 33(2 n+1)

J

0

o

n

kp(2n+D)
0
0
kb

ks

n

(Z (cos(2 TR t_-1 k_) + I'sin(2 ek t_-1 k_)) a;
!

b)(n_l), GCD(?), n — 3) = 1]’ [0, otherwise]]

)

187

188 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

(k mB)n (1 _ (w2)n)(n71)
> Circulant(4,[[1..2,a[i]],[3..4,b[i]]],print,c heck);
Matrix :
a; Qs bg b4
b4 (45] as b3

bs by a1 as

ay bz by a;

Determinant :
(a1 +a2+b3+b4) (a1 — a3 -|-b3 —b4) (a12 —2b3a1 -I-a22 —2a2b4+b32 +b42)

See Also: CirculantMatrix

Function: SYMMETRIC|ToeplitzMatrix| -specified Toeplitz matrix

Calling Sequence: ToeplitzMatrix(n, specL)

Parameters:
n - matrix order (symbolic or integer value)
specL - list of constant diagonals in the form: [[intervall, f1 |, [interval2, £2] , ...] where

intervals are of the form p1..p2 (with p1<=p2) and must be a partition of [-n+1..n-1]
[pl..p2, f] means that the diagonal i (p1<= 1 <= p2) is generated by the constant
function f(i).

(0=maindiagonal, 1= 1st upper sidediagonal, -1=1st lower side diagonal. etc.)
Short cuts: f instead of [[1..n, f]] and [pos, f] instead of [pos..pos, f] .

Description:

e The function ToeplitzMatrix returns the specified Toeplitz matrix (a matrix with constant diagonals).
If the order is symbolic then dots "o" are used to abbreviate the symbolic form; thus the returned
matrix in this case should be used for illustrative purposes only, since Maple treats the "o"’s as usual
matrix entries.

e This function is part of the SYMMETRIC package and so can be used in the form ToeplitzMatrix(..)
only after setting the libname appropriately and performing the command with(SYMMETRIC) or
with(SYMMETRIC, ToeplitzMatrix).

Examples:
> with(SYMMETRIC):
> ToeplitzMatrix(n,[[-n+1..-1,a],[0..1,b],[2..n -1,c]1);

B.4. THE SYMMETRIC PACKAGE

K

a

> ToeplitzMatrix(5,[[-4..-2,x[i]+1],[-1,£],[0..

!
f
T_9+1

> ToeplitzMatrix(n,[[-n+1..-1,x],[0

Y
Ty y
Y
T

r Tr T

See Also: ToeplitzDet

82 @ e w

1
1

f

z 3+1 x_o+1

..3,y1,[4..n -3,2],[n-2..n-1,al[il]]);

0
1
1
f

1,11,[2,01,[3..4,i11);

— o w

1

Lx,4+1 z 3+1 z o+1 f

(p—1
z
0]

o

ST~ ~ N S

= - O W =~

an
ap—1
z
(0]

0

IS

189

Function: SYMMETRIC|ToeplitzDet| - determinant of specified Toeplitz matrix

Calling Sequence:

ToeplitzDet(n, specL)
ToeplitzDet(n, specL, print)
ToeplitzDet(n, specL, check)
ToeplitzDet(n, specL, print, check)

190

APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

Parameters:

n

print - optional display directive

check - optional checking directive

check[k] - optional checking directive (k positive integer)
Description:

e The function ToeplitzDet returns a determinant formula for the specified Toeplitz matrix (a matrix
with constant diagonals). For symbolic orders this is only possible for some special cases, otherwise

- matrix order (symbolic or integer value)

specL - list of constant diagonals in the form: [[intervall, f1], [interval2, {2] , ...] where
intervals are of the form p1..p2 (with p1<=p2) and must be a partition of [-n+1..n-1]
[pl..p2, f] means that the diagonal i (p1<=1i <= p2) is generated by the constant

function f(i).

(0—maindiagonal, 1= 1st upper sidediagonal, -1=1st lower side diagonal. etc.)
Short cuts: f instead of [[1..n, f]] and [pos, f] instead of [pos..pos, {] .

the unevaluated function call is returned.

The optional directive check or check[k] , k positive integer, enables the checking mechanism: The
determinant of a integer order matrix is computed using the standard det function and is compared
with the value of the output formula for the same order. Default for the check order is 4 and can be
set to an arbitrarily large value using check|k]. If the output formula is only valid for higher orders, the
check order is automatically adapted. If the order n is an integer, the check value is set to n.

The directive print (optional) prints the specified alternant matrix before returning the determinant

formula.

This function is part of the SYMMETRIC package and so can be used in the form ToeplitzDet(..)
only after setting the libname appropriately and performing the command with(SYMMETRIC) or

with(SYMMETRIC, ToeplitzDet).

Examples:
> with(SYMMETRIC):
>

ToeplitzDet(n, [[-n+1..-3,a],[-2..3,b],[4..n-1 ,al]],print,check);

bbb
b b b
b b b
a b b
a a b
o a a
o 0 a
a o O
Laao

() o o S S (=) IS

Matriz
b a
b b
b b
b b
b b
b b
a b
a a
o a

a

> o oY oY oY oY R

Determinant :

[l S o o S S

B.4. THE SYMMETRIC PACKAGE 191

formula valid for : ;8 <n

[b—a)™ Y (b+k_a),n=6k_+1],[(b—a)" Y (b+(k_—1)a),n==6Fk_], [0, otherwise]
]

> ToeplitzDet(n,[[-n+1..-1,c],[0,a],[1..n-3,b], [n-2..n-1,z[i]]],print,check);

Matriz :

[a b b o o b z.opy Zna |
c a b b o o b Z_94n
c ¢ a b b o 0 b
c ¢ ¢ a b b 0 0
o ¢c ¢c ¢ a b b o
o 0o ¢c ¢ ¢ a b b
c 0o o ¢ ¢ ¢ a b
c ¢ o o ¢ ¢ c a

Determinant :

formula valid for : ;5 <n

SO0y DT (i) (0= B) =) 2
a—>b c—a
L D (o 4 2a) =)
c—a
_ p)(n—1) _1\(=34n) (_ _ (—2+n)
e (@D D (a4 B =)2
a—>b c—a
—c+a

b(a— b)) (—)(=247) (g — b) b(a—b)" D (—¢ + a)?
I —

—c+b (a—b)(—c+b)
+ (=D (e —a) Y 2y (@ b) + (1) D (e —a) Y 2,y
> ToeplitzDet(n,[[-n+1..-1,b],[0..1,a[il],[2..n -2,b],[n-1,2z]],print,check);

Matriz :

o b b b a a1 b b
o o b b b a a b

b o o b b b ay a

Lbboobbbao

Determinant :

formula valid for : ;5 <n

192 APPENDIX B. TUTORIAL FOR THE IMPLEMENTED MAPLE PACKAGES

n >= 2
Qo (ao — b)(1+n) _ b(ao — b)n (a1 — ao)
(ap — b)? (ap —b)?
—ag(b—ap)"n+ (b—aog)"a; — (a1 —b)"ap + ap (b —ag)" — (b—ag)”nal)/(—al +2b— ag)?
_ (ao —b)"b(4b(b—a0)3 +((11 —b)Sb—an (b—a0)3 —2(b—a0)3a1 — (a1 —b)3a0)
(—a1 + 2 b— 00)2 (a(] — b)3
b(B% (b —ag) 2™ 4+ b (b—ag) "2t ag — 2b (b—ag) "2 2 —b(b—ag) T3 a4
— (b= a0) "™ g + (b— ao) "™ zay + (a1 — b)" + (b — ag) "™ zag) /(
—ay + 2b— ag)

—(=1)"b(2b (b —ao)"n — 2b (b — ag)" + (ay — b)"b

_ (_1)(1+n)

See Also: ToeplitzMatrix

Bibliography

[ABD*97]

[Bar67]

[Bar68]

[Brig3]
[BS91]
[BY96]

[BY97]

[CGG+92]

[CGGGS3)

[Cla92]

[CLO96]

[DWO5]

[ES95]

[FW93]

[GKP92|
[Gol91]

[GvLI6]

F. Avnaim, J. Boissonat, O. Devillers, F. Preparata, and M. Yvinec. Evaluating signs of deter-
minants using single-precision arithmetic. Algorithmica, 17:111-132, 1997.

E.H. Bareiss. Sylvesters identity and multistep integer preserving gaussian elimination. Math.
Comput., 8:565-578, 1967.

E.H. Bareiss. Computational solution of matrix problems over an integral domain. J. Inst.
Maths. Applics., 10:68-104, 1968.

E. Brieskorn. Lineare Algebra und analytische Geometrie I. Vieweg, 1983.
I. Bronstein and K. Semendjajew. Taschenbuch der Mathematik. Teubner, 25th edition, 1991.

H. Bronnimann and M. Yvinec. A complete analysis of Clarkson’s algorithm for safe determinant
evaluation. Technical Report 3051, INRIA, 1996.

H. Bronnimann and M. Yvinec. Efficient exact evaluation of signs of determinants. In Proc. 13th
Annu. ACM Sympos. Comput. Geom., pages 166-173, 1997.

B. Char, K. Geddes, G. Gonnet, B. Leong, M. Monagan, and S. Watt. Maple V Language
Reference Manual, 1992.

B. Char, K. Geddes, W. Gentleman, and G. Gonnet. The design of Maple : A compact, portable
and powerful computer algebra system. In Proceedings of Furocal '83, 1983.

K. Clarkson. Safe and effiecient determinant evaluation. In Proc. 83rd Annu. IEEE Sympos.
Found. Comput. Sci., pages 387-395, 1992.

D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms. Springer, second edition,
1996.

A. Dress and W. Wenzel. A simple proof of an identity concerning pfaffians of skew symmetric
matrices. Advances in Mathematics, 112:120-134, 1995.

J. Erickson and R. Seidel. Better lower bounds on detecting affine and spherical degeneracies.
Discrete Computational Geometry, 13:41-57, 1995.

S. Fortune and C. Van Wyk. Efficient exact arithmetic for computational geometry. In Proc. 9th
Ann. Symp. Comp. Geom., pages 163-172, 1993.

R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics. Addison—Wesley, 1992.

D. Goldberg. What every computer scientist should know about floating—point arithmetic. ACM
Computing Surveys, 21(1):5-48, 1991.

G. Golub and C. van Loan. Matriz Computations. Johns Hopkins University Press, third edition,
1996.

193

194

[HS75]

[J&n91]
[Kal]
[Knu96|

[LP86]

[Met60]
[Mit81]

[Mon]
[Red94]
[SBYO]

[SM82]

[Sto94]
[SW&9]

[Val79]

BIBLIOGRAPHY
E. Horowitz and S. Sahni. On computing the exact determinant of matrices with polynomial
entries. Journal of the ACM, 22:38-50, 1975.
K. Jénich. Lineare Algebra. Springer, 1991.
K. Kalorkoti. Introduction to computer algebra. Edinburgh CS4 Course Notes.

D. Knuth. Overlapping pfaffians. Electronic Journal of Combinatorics, 3, 1996. available at
http://www-cs-faculty.stanford.edu/ knuth/musings.html.

L. Lovasz and M. Plummer. Matching Theory. Number 29 in Annals of Discrete Mathematics.
Elsevier Science Publishers, 1986.

W. Metzler. A Treatise on the Theory of Determinants by Thomas Muir. Dover reprint, 1960.

O. Mitchell. Note on the determinant of powers. American Journal of Mathematics, 4:341-344,
1881.

M. Monagan. Programming in Maple: The Basics.
D. Redfern. Maple Handbook, Maple V R3, 1994.
J. Stoer and R. Bulirsch. Numerische Mathematik II. Springer, third edition, 1990.

T. Sasaki and H. Murao. Efficient gaussian elimination method for symbolic determinants and
linear systems. ACM Trans. Math. Software, 8:277-289, 1982.

J. Stoer. Numerische Mathematik I. Springer, 7th edition, 1994.

U. Storch and H. Wiebe. Lehrbuch der Mathematik: Band II: Lineare Algebra. BI Wis-
senschaftsverlag, 1989.

L. Valiant. Completeness classes in algebra. In Proc. 11th Ann. Symp. Theory Comput., pages
249-261, 1979.

